Chemistry: molecular biology and microbiology – Process of utilizing an enzyme or micro-organism to destroy... – Destruction of hazardous or toxic waste
Reexamination Certificate
2003-01-29
2004-10-19
Naff, David (Department: 1651)
Chemistry: molecular biology and microbiology
Process of utilizing an enzyme or micro-organism to destroy...
Destruction of hazardous or toxic waste
C435S243000, C435S822000
Reexamination Certificate
active
06806078
ABSTRACT:
BACKGROUND OF THE INVENTION
Ground water represents greater than 95% of the available fresh water in the United States including the Great Lakes (Faust and Aly, 1987). Contamination of ground water resources with persistent contaminants such as toxic metals, MTBE, and chlorinated solvents is a growing problem. Ground water use by public utilities tripled between 1950 and 1975 and from 3.5 bgd to 11 bgd and use continues to grow rapidly in recent years (Faust and Aly, 1987). Detection of organic contaminants such as chlorinated solvents in municipal supply wells is becoming more and more common. “Halogenated volatile organic compounds (VOCs), including chlorinated aliphatic hydrocarbons (CAHs) are the most frequently occurring type of contaminant in soil and ground water at Superfund and other hazardous waste sites in the United States. The U.S. Environmental Protection Agency (EPA) estimates that cleanup of these sites will cost more that $45 billion (1996 dollars) over the next several decades (EPA, 1997). Innovative technologies, including in situ bioremediation, are being developed and implemented in an effort to reduce the cost and time required to clean up those sites. In situ bioremediation is increasingly being selected to remediate hazardous waste sites because, when compared to above-ground technologies, it is usually less expensive, does not require waste extraction or excavation, and is more publicly acceptable as it relies on natural processes to treat contaminants.” (EPA 542-R-00-008, July 2000).
Natural attenuation of chlorinated solvents by reductive dechlorination often occurs at sites where an electron donor (food source or substrate for microbes) is present along with the chlorinated solvent contamination. As dissolved oxygen and other electron acceptors become depleted some microbes are capable of using the chlorinated solvents as electron acceptors. For selected compounds such as chlorinated ethylenes sequential dechlorination to a harmless byproduct ethylene can be achieved under favorable environmental conditions (EPA/600/R-98/128 September 1998).
In recent years efforts have been made to produce this anaerobic treatment effect by injection of electron donor into the subsurface. An overview of these technologies can be reviewed in the EPA document Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications (EPA 542-R-00-008 July 2000). Other inorganic and organic compounds can be degraded or immobilized under anaerobic conditions including selected toxic metals, nitrate, and MTBE. For sites that do not have sufficient amounts of natural electron donors to drive anaerobic natural attenuation, injection of microbial substrates has proven to be a cost-effective treatment or plume migration control measure. The microbial substrates can be injected into the contaminant source area where residual contamination is adsorbed onto soils or injected in a line across a ground water contaminant plume to form a permeable reactive wall to prevent further contaminant migration.
A wide variety of sugars, alcohols, organic acids, and even molecular hydrogen have been used successfully as electron donors to enhance anaerobic biotransformation processes. Most of these compounds are rapidly consumed after injection and must be replaced by either continuous low concentration delivery systems or with frequent batch additions of additive solution. Contaminant source areas can not be effectively removed or even precisely located for many ground water contaminant plumes. The presence of residual chlorinated solvents adsorbed onto soils or present as dense nonaqueous phase product (DNAPL) serves as an example of persistent ground water plume source areas that can last for many decades. These persistent contaminant source areas continue to contaminate ground water for many years such that continuous operation of recirculation systems or frequent substrate injections can be very costly over the life of a project. Long-term injection of substrates into wells or infiltration galleries often leads to severe bacterial fouling problems adding to project operation and maintenance costs.
Recent interest has developed in the use of materials that slowly biodegrade or slowly release organic matter into ground water over time. A commercial product marketed under the brand name of HRC (Hydrogen Release Compound) has been used at many sites to slowly release lactic acid. As described in U.S. Pat. No. 6,420,594 such compounds comprise esters of polylactic acid and polyols. The compound is relatively expensive (approximately $6.00/pound) compared to common low molecular weight substrates such as sugars (approximately $0.30/pound), but is designed to provide a steady supply of lactic acid to ground water for up to a year. Injection of HRC into soil or ground water often results in a limited treatment radius due to the small volume and high viscosity of the injected material. Although the longevity of the product is greatly improved over simple sugars or other low molecular weight substrates reinjection of the product on an annual basis makes this treatment cost prohibitive at many sites.
A variety of sparingly soluble materials also have been explored for their potential to produce a long-term release of electron donors including canola oil, soybean oil, and oleate. A variety of vegetable oils have been demonstrated to be effective electron donors to stimulate anaerobic biodegradation. Although edible oils such as soybean oil have a much lower viscosity than a semisolid product like HRC, distribution in saturated soils is difficult. Soybean oil has a viscosity approximately 80 times higher than water, which results in multiphase fluid flow and potential oil blockage of soil porosity.
The problem of oil viscosity can be greatly reduced by injecting the edible oil as an oil/water emulsion. If the oil droplets are made small enough a dilute but efficacious emulsion has a fluid viscosity that is essentially the same as water. A comparison of the effectiveness of pure soybean oil injection with emulsified oil injection was completed at five Air Force sites, with data clearly indicating that the performance of the emulsified oil is superior.
Injection of pure oil or large droplets of emulsified oil blocks soil pores producing treatment zones that are ineffective because they prevent free flow of ground water through the oil treated area. Injection of pure soybean oil into porous soil media has been shown to reduce water permeability by up to 100%. When oil droplets were reduced to a 6.1-micron median droplet size the soil permeability was still reduced by up to 70% in a quartz sand soil. By reducing the median droplet size of an oil/water emulsion to 2.1 microns the loss of soil permeability from pore clogging was reduced to 25% such that 75% of the original permeability remained after oil/water injection.
Published experimental data suggests that oil/water emulsions in porous media are best described by a filtration model rather than an oil droplet retardation model. Soil column studies confirmed that oil droplets that are trapped within a soil matrix are not easily released, even when the columns are flushed with several pore volumes of clean water. Oil droplets can be retained in porous soil media by two mechanisms straining and interception. In the straining process droplets that are larger than a pore throat physically lodge in the pore throat. In the process of interception droplets contact soil particles and attach to the soil matrix because of electrical charge, Van der Waals forces or other physical mechanisms.
Both mechanisms can act to block a soil matrix pore throat even when oil droplets are smaller than the soil pore throats. As an example a 2.5 micron pore throat may be blocked by 1.0 micron oil droplets if both sides of the pore throat soil particles first attract oil particles by interception, followed by a third particle intercepted by straining in the now reduced pore throat size. As the smaller diameter pore throats become blocked flow
Naff David
Sandt Bernd W.
Ware Deborah K.
LandOfFree
Substrate and method for anaerobic remediation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Substrate and method for anaerobic remediation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substrate and method for anaerobic remediation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3260560