Substituted aminomethylphosphines, compositions and...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S141000, C526S161000, C526S172000, C526S317100, C526S351000, C526S352000, C526S943000, C502S102000, C544S225000, C544S337000, C546S002000, C546S010000, C546S022000, C556S021000, C556S028000

Reexamination Certificate

active

06177528

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to the field of catalysis. In particular, this invention relates to new compounds that are useful as ligands for organometallic complexes that are catalysts for a variety of different reactions. The invention also relates to combinatorial chemistry in that combinatorial techniques were used in connection with this invention.
BACKGROUND OF THE INVENTION
Ancillary ligand stabilized metal complexes (e.g., organometallic complexes) are useful as catalysts, additives, stoichiometric reagents, monomers, solid state precursors, therapeutic reagents and drugs. The ancillary ligand system comprises organic substituents that bind to the metal center(s), remain associated with the metal center(s), and therefore provide an opportunity to modify the shape, electronic and chemical properties of the active metal center(s) of the organometallic complex.
Certain organometallic complexes are catalysts for reactions such as oxidation, reduction, hydrogenation, hydrosilylation, hydrocyanation, hydroformylation, polymerization, carbonylation, isomerization, metathesis, carbon-hydrogen activation, cross-coupling, Friedel-Craftis acylation and alkylation, hydration, dimerization, trimerization, oligomerization, Diels-Alder reactions and other transformations. Organometallic complexes can be prepared by combining an ancillary ligand precursor with a suitable metal precursor in a suitable solvent at a suitable temperature.
One example of the use of organometallic complexes this is in the field of single- sited olefin polymerization catalysis. The active site typically comprises an ancillary ligand-stabilized, coordinatively unsaturated transition metal alkyl complex. Although a variety of such organometallic catalysts have been discovered over the past 15 years, the discovery process is laborious, entailing the individual synthesis of potentially catalytic materials and subsequently screening them for catalytic activity.
It is always a desire to discover new ligand systems that, once connected to a metal center, will catalyze reactions differently from known ligand systems. This invention provides new ancillary ligands that may be attached to a metal center. Once attached, such ligands modify the electronic and steric environment and may catalyze reactions differently from known systems.
SUMMARY OF THE INVENTION
The invention disclosed herein is a new ligand, which can be characterized by the general formula:
wherein each of R
1
, R
2
, R
3
, and R
4
is, independently, selected from the group consisting of hydrogen, allyl, substituted all, aryl, substituted aryl, arylalkyl, substituted arylalkyl, acyl, amino, alkylamino, acylamino, silyl, germyl, stanyl, siloxy, phosphino, aryloxy, aryloxyalkyl, substituted aryloxyalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, heterocycles, substituted heterocycles, heterocyclicalkyl, substituted heterocyclicalkyl S-aryl and S-alkyl mercaptans and combinations thereof. Optionally, R
1
and R
2
are combined together to form a ring structure. Also optionally, R
3
and R
4
are combined together in a ring structure. R′ is selected from a similar group, with particular exceptions, such as hydrogen.
The ligands of this invention are made in a novel method. The new method is particularly suitable for simultaneous or parallel synthesis of the ligands of this invention, however, serial synthesis is also possible. Generally, the aminomethylphosphines of this invention are prepared by a condensation reaction that combines an amine, a phosphine and an aldehyde, with a variety of substitutions on each, in tetrahydrofuran (THF) at about room temperature.
After synthesis, the ligand is combined with a metal precursor compound to form a composition of matter or a coordination complex in a ligand exchange reaction. The resulting composition or coordination complex is generally useful as a catalyst. For example, the coordination complex may be a single-site catalyst for the polymerization of olefins, diolefms or acetylenically unsaturated monomers, either alone or in combination. Depending on the compound or composition, the catalyst may be activated for polymerization activity through the use of an activator or activating technique. The composition or complex is also catalyst for various cross coupling reactions or other chemical transformations.
Thus, in one aspect of the invention, new ligands are provided that may be combined into a composition or coordination complex usefull as a catalyst.
In another aspect of this invention a new method of synthesis is provided that allows for easy synthesis of the new ligands, where the new procedure does not require refluxing or harsh solvents.
In a further aspect of this invention, new coordination complexes are provided that catalyze chemical reactions, including polymerization or cross coupling reactions.
In yet a flier aspect of this invention, a polymerization process is described employing the coordination complexes of this invention as a or the only component of a catalyst system.
In still a further aspect of this invention, new polymers may be created through the use of a novel polymerization catalyst.
Further aspects of this invention will be evident to those of skill in the art upon review of this specification.
DETAILED DESCRIPTION OF THE INVENTION
The invention disclosed herein is a new ligand combined with metals to form coordination complexes that are useful as catalysts for chemical reactions, particularly polymerization and cross coupling reactions.
As used herein, the phrase “characterized by the formula” is not intended to be limiting and is used in the same way that “comprising” is commonly used. The term “independently selected” is used herein to indicate that the R groups, e.g., R
1
, R
2
, R
3
, and R
4
, can be identical or different (e.g. R
1
, R
2
, R
3
, and R
4
may all be substituted alkyls or R
1
and R
2
may be a substituted alkyl and R
3
may be an aryl, etc.). Adjacent R-groups may be coupled to form cyclic structures. A named R group will generally have the structure that is recognized in the art as corresponding to R groups having that name. For the purposes of illustration, representative R groups as enumerated above are defined herein. These definitions are intended to supplement and illustrate, not preclude, the definitions known to those of skill in the art.
The term “alkyl” is used herein to refer to a branched or unbranched, saturated or unsaturated, monovalent hydrocarbon radical. When the alkyl group has from 1-6 carbon atoms, it is referred to as a “lower alkyl.” Suitable allyl radicals include, for example, methyl, ethyl, n-propyl, i-propyl, 2-propenyl (or allyl), n-butyl, t-butyl, i-butyl (or 2-methylpropyl), etc. As used herein, the term encompasses “substituted alkyls.” In particular embodiments, allyls have between 1 and 200 carbon atoms, between 1 and 50 carbon atoms or between 1 and 20 carbon atoms.
“Substituted alkyl” refers to alkyl as just described including one or more functional groups such as lower alkyl, aryl, acyl, halogen (i.e., alkylhalos, e.g., CF
3
), hydroxy, amino, cyano, phosphido, alkoxy, alkylamino, acylamino, acyloxy, aryloxy, aryloxyalkyl, mercapto, both saturated and unsaturated cyclic hydrocarbons, heterocycles and the like. These groups may be attached to any carbon of the alkyl moiety.
The term “aryl” is used herein to refer to an aromatic substituent which may be a single aromatic ring or multiple aromatic rings which are fused together, linked covalently, or linked to a common group such as a methylene or ethylene moiety. The common linking group may also be a carbonyl as in benzophenone. The aromatic ring(s) may include substituted or unsubstituted phenyl, naphthyl, biphenyl, diphenylmethyl and benzophenone among others. In particular embodiments, aryls have between 1 and 200 carbon atoms, between 1 and 50 carbon atoms or between 1 and 20 carbon atoms. “Substituted aryl” refers to aryl as just described including one or more functional groups such as low

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Substituted aminomethylphosphines, compositions and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Substituted aminomethylphosphines, compositions and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substituted aminomethylphosphines, compositions and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2490748

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.