Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
1999-12-27
2002-06-04
Nguyen, Anhtuan T. (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S288030
Reexamination Certificate
active
06398764
ABSTRACT:
BACKGROUND OF THE INVENTION
1. The Field of Invention
The present invention relates to subcutaneously implanted cannulas used to access the body's circulation. More particularly, this invention provides a cannula and method for establishing intermittent vascular access using an implanted cannula in the general shape of a “T”.
The advent of hemodialysis for the treatment of end-stage renal disease has prompted the development of many vascular access devices for the purpose of acquiring and returning large quantities of blood for passage through an extracorporeal circuit during hemodialysis procedure. Available devices have generally relied on the use of either indwelling venous catheters or flow through shunt devices which create an artificial fistula between an artery and vein.
Venous catheters are limited by relatively poor draw flows and by their tendency to be irritative resulting in vessel stenosis, thrombosis, and occasionally vessel perforation. They frequently fail because of infection, weakness in the vessel wall, poor catheter position, and/or thrombus formation in the catheter lumen. Shunt devices which create a fistulous blood flow between an artery and a vein have been the mainstay of modern vascular access for dialysis but are similarly problematic. Installation of these “shunts” is an extensive surgical procedure resulting in significant tissue trauma and pain. Once in place, the shunts result in additional cardiac output needs with as much as one-fifth of the cardiac output (approximately 1000 ml per minute) required for adequate function. In addition, the transfer of the arterial pressure wave results in damage to the vein at the point of anastomosis with the shunt and can result in intimal hyperplasia and subsequent thrombosis and shunt occlusion. When such occlusion occurs, another vein segment must be used for shunt revision, and exhaustion of available sites is distressingly common and can be fatal. Repeated punctures of the wall of the shunt often result in eventual failure and require additional surgery to repair or replace the shunt. The expense in terms of both health care dollars and human misery is enormous.
Each of the available access technologies mentioned thus far are also complicated by the possibility of recirculation of blood already passed through the extra-corporeal circuit resulting in the loss of treatment efficiency. The harm done to patients by the “recirculation syndrome” is insidious and at times undetected until great harm has been done.
Indwelling catheters which occupy only a portion of the vessel lumen are subject to movement within the vessel, which can cause irritation or even vessel perforation. Further, catheters which occupy only a portion of the vessel lumen, and which are inserted or threaded through the lumen for substantial distances tend to disrupt the normal flow of blood through the vascular structure, altering the hemodynamics of the blood flow in a manner which can damage the vessel, the components of the blood, and which can encourage thrombosis. Such catheters are generally unsuitable for long term implantation in arteries.
What is needed is a cannula that can be implanted within an artery and that will cause minimal disruption of blood flow through the lumen of the artery during use and nonuse of the cannula, which does not cause vessel stenosis, thrombosis, or vessel perforation, which is capable of handling large quantities of blood, and which will retain its usefulness for a long period of time after implantation.
2. Description of the Background Art
Vascular access employing indwelling catheters is described in a number of patents and publications including U.S. Pat. Nos. 3,888,249; 4,543,088; 4,634,422; 4,673,394; 4,685,905; 4,692,146; 4,695,273; 4,704,103; 4,705,501; 4,772,270; 4,846,806; 5,053,613; 5,057,084; 5,100,392; 5,167,638; 5,108,365; 5,226,879; 5,263,930; 5,281,199; 5,306,255; 5,318,545; 5,324,518; 5,336,194; 5,350,360; 5,360,407; 5,399,168; 5,417,656; 5,476;451; 5,503,630; 5,520,643; 5,527,277; and 5,527,278; and EP 228 532; and Wigness et al. (1982) paper entitled “Biodirectional Implantable Vascular Access Modality” presented at the Meeting of the American Society for Artificial Internal Organs, Apr. 14-16, 1982, Chicago, Ill.
Catheters having distal valves are described in a number of patents including U.S. Pat. Nos. 274,447; 3,331,371; 3,888,249; 4,549,879; 4,657,536; 4,671,796; 4,701,166; 4,705,501; 4,759,752; 4,846,806; 4,973,319; 5,030,710; 5,112,301; 5,156,600; and 5,224,978.
Implantable dialysis connection parts are described in a number of patents including U.S. Pat. Nos. 4,692,146; 4,892,518; 5,041,098; 5,180,365; and 5,350,360.
SUMMARY OF THE INVENTION
The present invention provides improved implantable vascular cannulas which are particularly useful for providing long-term access to the arterial vasculature, including both native arteries and artificial arterial lumens (such as an arteriovenous (AV) shunt or an arterial graft. The cannulas of the present invention comprise a tubular body which is implantable within an arterial lumen and an access leg having one end attached to a side wall of the tubular body. Both the tubular body and the access leg have lumens therethrough, with the lumen of the tubular body being configured to receive the entire blood flow of the arterial lumen in which it is implanted. The access leg, which is attached to the tubular body in a generally T-shaped configuration, thus provides for access into the lumen of the tubular body for either withdrawing blood (e.g. for hemodialysis or other extra-corporeal treatment) or for introducing drugs or other media into the arterial blood flow.
The arterial access cannula may be implanted either subcutaneously or transcutaneously. By transcutaneous, it is meant that a portion of the access leg will pass outwardly through the patient's skin to permit direct arterial access using external drug pumps, syringes, or other equipment. It will be appreciated, of course, that a hemostasis valve must be provided on the access leg to prevent uncontrolled blood loss. Usually, any transcutaneous use of the cannula of the present invention will be only for a short time.
More usually, the cannula of the present invention will be intended for subcutaneous use. In that case, an access port is connected to the open end of the access leg and is also subcutaneously implanted beneath the patient's skin. The access port will be suitable for attachment to needles, tubes, catheters, and other devices which may be percutaneously introduced into the access port to provide a desired external connection. An example of an access port comprises a chamber having a penetrable membrane on one side thereof. Temporary access to the chamber is formed by penetrating the needle, tube, or catheter through the penetrable membrane.
In all cases, the T-configured arterial cannula of the present invention is an improvement over prior indwelling catheters in a number of respects. The tubular body is firmly anchored within the artery and not subject to being moved or dislodged by blood flow. Thus, trauma to the arterial wall from movement of the cannula is significantly lessened. Moreover, by assuring that the lumen of the tubular body has a cross-sectional shape and dimensions which closely match those of the arterial lumen, smooth blood flow through the cannula can be enhanced while the risk of thrombus formation is substantially reduced.
In a preferred construction, the arterial cannula will include an isolation valve, at or near the junction between the access leg and the tubular body. The isolation valve can be any type of valve that closes or inhibits flow between the tubular body lumen and the access leg lumen in the absence of a pressure drop therebetween. Thus, when blood is not being withdrawn and/or when drugs or other media are not being introduced, the isolation valve will close and isolate the lumen of the access leg from arterial blood flow. Such isolation is a significant advantage since it reduces the risk of thrombus formation withi
Brugger James M.
Burbank Jeffrey H.
Finch, Jr. Charles D.
Kuiper Hendrik E.
Nguyen Anhtuan T.
Townsend and Townsend / and Crew LLP
VASCA. Inc.
LandOfFree
Subcutaneously implanted cannula and method for arterial access does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Subcutaneously implanted cannula and method for arterial access, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Subcutaneously implanted cannula and method for arterial access will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2908121