Chemical apparatus and process disinfecting – deodorizing – preser – Control element responsive to a sensed operating condition
Reexamination Certificate
2001-10-25
2004-08-17
Ludlow, Jan M. (Department: 1743)
Chemical apparatus and process disinfecting, deodorizing, preser
Control element responsive to a sensed operating condition
C422S105000, C436S180000
Reexamination Certificate
active
06776965
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to devices for efficient transport, transfer and movement of fluids. In particular, the invention provides fluidic micro-structures for controlled transport and movement of liquids in devices for analytical and other purposes. Devices of the invention include one or more features that can enhance performance of the fluid transfer, described below and referred to as a “pre-shooter stop”, a “butterfly” structure, a “cascade” structure, a waste chamber inlet, a capillary driven sample inlet chamber, a capillary stop structure, a bifurcation flow-through mechanism, and a hydrophobic vent.
2. Background
The development of bio-array technologies promises to revolutionize the way biological research is carried out. Bio-arrays, wherein a library of biomolecules is immobilized on a small slide or chip, allow hundreds to thousands of assays to be carried out simultaneously on a miniaturized scale. This permits researchers to quickly gain large amounts of information from a single sample. In many cases, bio-array type analysis would be impossible using traditional biological techniques due to the rarity of the sample being tested and the time and expense necessary to carry out large-scale analysis.
Bio-arrays or chips as substrate platforms for analytical purposes will continue to transform the way the analysis and the determination of materials will be carried out in the future. Low cost chips will become established in a variety of fields where easy and rapid analysis is demanded with very low amount of sample availability. For example, such fields may include: medical, clinical, biochemical, chemical, environmental, food, and industrial analysis. In many of these areas, analysis is limited or even impossible using traditional laboratory techniques due to the very time-consuming and expensive procedures, combined with high sample volume requirement.
Although bio-arrays are powerful research tools, they suffer from a number of shortcomings. For example, bio-arrays tend to be expensive to produce due to difficulties involved in reproducibly manufacturing high quality arrays. Also, bio-array techniques cannot always provide the sensitivity nor the consistent results necessary to perform desired experimentation. Therefore, it would be desirable to provide an improved device which is available for a variety of miniaturized analytical purposes including analytical chips, and allowing for effective transport, delivery, and removal of liquids for efficient experimentation using bio-arrays.
SUMMARY OF THE INVENTION
The present invention provides novel fluidic devices for efficient transport of fluids. Devices of the invention are suitably employed for analytical studies and other applications using bio-arrays or microchips.
Devices of the invention include one or more features that can enhance performance of fluid transfer through the device structure, such features are generally referred to herein as a pre-shooter stop, a butterfly structure, a cascade structure, a waste chamber inlet, a capillary driven sample inlet chamber, a capillary stop structure, a bifurcation flow-through mechanism or structure, and a hydrophobic vent.
Preferred devices of the invention, including microstructured devices useful for analytical purposes can comprise a filling station or section, an analysis station or section and a waste station or section. Generally preferred devices according to the invention include one or more features that can enhance performance of fluid transfer through the device structure, such features generally referred to herein as a sample inlet chamber (e.g. a capillary drive sample inlet chamber), a butterfly structure, a bifurcation flow-through structure, a cascade structure, a pre-shooter stop structure, a capillary stop structure (e.g. a flow-gate, optionally with evaporation stop), a vent (e.g. a hydrophobic vent), a waste outlet, a waste collecting chamber, and a waste inlet into a waste collecting chamber.
The filling section can comprise an inlet port, an inlet channel, a filling chamber and an outlet channel. The inlet channel connects the inlet port to one end of the filling chamber, the volume of which is preferably sufficiently large to take up the entire volume, or essentially entire (e.g. at least about 95 vol %) of a fluid sample. The outlet channel connects preferably the other end of the filling chamber (opposite to the inlet channel) top the analysis section.
The analysis section can comprise a channel, the entrance of which is connected to the filling section. The volume of the channel of the analysis section is suitably less than the volume of the filling chamber. The cross-section, the length and the shape of the channel located in the analysis section are adapted to the intended use of the device.
The waste section comprises at least an outlet for the fluid leaving the analysis section. The waste section can comprise further a waste chamber for collecting fluid coming out of the analysis section, and a connecting channel between the exit of the analysis section and the waste collecting chamber.
The filling section, the analysis section and the waste section can comprise various structures for the precisely controlled transport of fluids through said sections.
In further detail, a pre-shooter stop of devices of the invention can inhibit undesired edge fluid flow, i.e. where an introduced fluid flows through the device more quickly along the flow channel edges than the middle regions of the flow channel. The pre-shooter stop includes irregularly-shaped edges of the flow channel, particularly triangular or saw-toothed edges that allow for an even advancing flow line through a flow channel.
The butterfly and cascade structures of devices of the invention can provide a more homogeneous spread of a fluid stream that enters a relatively wider flow area from a narrower flow area. The butterfly structure as referred to herein is a symmetrical V-shaped or delta-shaped pair of flow channels that emerge from a single flow channel. The two channels have the same cross-sectional area as the single channel that flows or feeds fluid into the two channels. The two channels present a common V-shaped front to the single channel that feeds fluid into the channels.
The cascade structure as referred to herein includes a triangular shaped structure with steps (terraces) of increasing depth in the direction of the triangle top, thereby providing a decreased capillary force. That structure can provide for flowing fluid to fill out each level or step before flowing to a next level, again promoting a homogeneous spread of fluid.
A device of the invention also can include a certain fluid inlet coupled to a waste structure that receives spent test sample, wash fluids, etc. The waste chamber inlet contains an inlet neck that is graded with notches that can contact and adhere to fluid absorbent material such as fleece contained within the waste chamber.
A device of the invention also may contain a fluid receiving chamber that promotes capillary flow of the fluid through the device. The receiving chamber suitably can be e.g. a vertical wedged-shape slot, with decreasing width into the device, or a funnel-shaped inlet with decreasing diameter into the device. Fluid can be pipetted or otherwise introduced into the receiving chamber and thereby flow via capillary forces through the device.
A device of the invention may further contain a capillary stop, which can provide for capillary fluid flow to be substantially interrupted at a defined point. A capillary stop includes a flow channel or space of low capillarity at the end of a flow channel or space of high capillarity, or a flow channel or space of low capillarity between two channels of high capillarity. Fluid will stop at the end of the channel of high capillarity and will not enter the flow space of low capillarity.
A device of the invention may further contain an air exit vent that is capped by a hydrophobic, air permeable material. The material may suitably be a
Bartos Holger
Blankenstein Gert
Osterloh Dirk
Peters Ralf-Peter
Schon Christian
Corless Peter F.
Edwards & Angell LLP
Ludlow Jan M.
O'Day Christine C.
Steag Microparts
LandOfFree
Structures for precisely controlled transport of fluids does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Structures for precisely controlled transport of fluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structures for precisely controlled transport of fluids will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3343401