Structure and method of sub-gate and architectures employing...

Static information storage and retrieval – Floating gate – Particular biasing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S185280, C365S185290

Reexamination Certificate

active

07414889

ABSTRACT:
A bandgap engineered SONOS device structure for design with various AND architectures to perform a source side injection programming method. The BE-SONOS device structure comprises a spacer oxide disposed between a control gate overlaying an oxide-nitride-oxide-nitride-oxide stack and a sub-gate overlaying a gate oxide. In a first embodiment, a BE-SONOS sub-gate-AND array architecture is constructed multiple columns of SONONOS devices with sub-gate lines and diffusion bitlines. In a second embodiment, a BE-SONOS sub-gate-inversion-bitline-AND architecture is constructed multiple columns of SONONOS devices with sub-gate inversion bitlines and with no diffusion bitlines.

REFERENCES:
patent: 4630086 (1986-12-01), Sato et al.
patent: 5286994 (1994-02-01), Ozawa et al.
patent: 5319229 (1994-06-01), Shimoji et al.
patent: 5952692 (1999-09-01), Nakazato et al.
patent: 6011725 (2000-01-01), Eitan et al.
patent: 6026026 (2000-02-01), Chan et al.
patent: 6074917 (2000-06-01), Chang et al.
patent: 6169693 (2001-01-01), Chan et al.
patent: 6218700 (2001-04-01), Papadas et al.
patent: 6512696 (2003-01-01), Fan et al.
patent: 6709928 (2004-03-01), Jenne et al.
patent: 6720630 (2004-04-01), Mandelman et al.
patent: 6784480 (2004-08-01), Bhattacharyya
patent: 6818558 (2004-11-01), Rathor et al.
patent: 6897533 (2005-05-01), Yang et al.
patent: 6912163 (2005-06-01), Zheng et al.
patent: 6977201 (2005-12-01), Jung et al.
patent: 7075828 (2006-07-01), Lue et al.
patent: 7115469 (2006-10-01), Halliyal et al.
patent: 7115942 (2006-10-01), Wang
patent: 7133313 (2006-11-01), Shih et al.
patent: 7151692 (2006-12-01), Wu et al.
patent: 7158420 (2007-01-01), Lung
patent: 7164603 (2007-01-01), Shih et al.
patent: 7187590 (2007-03-01), Zous et al.
patent: 7190614 (2007-03-01), Wu et al.
patent: 7209390 (2007-04-01), Lue et al.
patent: 2003/0030100 (2003-02-01), Lee et al.
patent: 2003/0032242 (2003-02-01), Lee et al.
patent: 2003/0042534 (2003-03-01), Bhattacharyya
patent: 2003/0047755 (2003-03-01), Lee et al.
patent: 2003/0146465 (2003-08-01), Wu
patent: 2003/0224564 (2003-12-01), Kang et al.
patent: 2004/0079983 (2004-04-01), Chae et al.
patent: 2004/0183126 (2004-09-01), Bae et al.
patent: 2004/0256679 (2004-12-01), Hu
patent: 2005/0006696 (2005-01-01), Noguchi et al.
patent: 2005/0023603 (2005-02-01), Eldridge et al.
patent: 2005/0074937 (2005-04-01), Jung
patent: 2005/0093054 (2005-05-01), Jung
patent: 2005/0219906 (2005-10-01), Wu
patent: 2005/0237801 (2005-10-01), Shih
patent: 2005/0237809 (2005-10-01), Shih et al.
patent: 2005/0237813 (2005-10-01), Zous et al.
patent: 2005/0237815 (2005-10-01), Lue et al.
patent: 2005/0237816 (2005-10-01), Lue et al.
patent: 2005/0270849 (2005-12-01), Lue
patent: 2005/0281085 (2005-12-01), Wu
patent: 2006/0198189 (2006-09-01), Lue et al.
patent: 2006/0198190 (2006-09-01), Lue
patent: 2006/0202252 (2006-09-01), Wang et al.
patent: 2006/0202261 (2006-09-01), Lue et al.
patent: 2006/0258090 (2006-11-01), Bhattacharyya et al.
patent: 2006/0261401 (2006-11-01), Bhattacharyya
patent: 2006/0281260 (2006-12-01), Lue
patent: 2007/0001210 (2007-01-01), Hsu et al.
patent: 2007/0012988 (2007-01-01), Bhattacharyya
patent: 2007/0029625 (2007-02-01), Lue et al.
patent: 2007/0031999 (2007-02-01), Ho et al.
patent: 2007/0045718 (2007-03-01), Bhattacharyya
patent: 2007/0069283 (2007-03-01), Shih et al.
patent: 0016246 (1980-10-01), None
patent: 1411555 (2004-04-01), None
patent: 11040682 (1999-02-01), None
patent: 2004363329 (2004-12-01), None
Office Action mailed Nov. 23, 2007 in U.S. Appl. No. 11/197,668.
Office Action mailed Oct. 19, 2007 in U.S. Appl. No. 11/324,495.
White et al., “On the Go with SONOS” IEEE Circuits and Devices, Jul. 2000, 22-31.
Walker, et al., “3D TFT-SONOS Memory Cell for Ultra-High Density File Storage Applications,” 2003 Symposium on VLSI Tech Digest of Technical Papers, 29-30.
Minami et al., “New Scaling Guidelines for MNOS Nonvolatile Memory Devices,” IEEE Trans on Electron Devices 38(11) Nov. 1991 2519-2526.
Ito et al., “A Novel MNOS Technology Using Gate Hole Injection in Erase Operation for Embedded Nonvolatile Memory Applications,” 2004 Symp. on VLSI Tech Digest of Tech Papers 2004, 80-81.
Eitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE Electron Device Lett 21(11) Nov. 2000, 543-545.
Chindalore et al., “A New Combination-Erase Technique for Erasing Nitride Based (SONOS) Nonvolatile Memories,” IEEE Electron Dev Lett 24(4) Apr. 2003, 257-259.
DiMaria, D.J., et al., “Conduction Studies in Silicon Nitride: Dark Currents and Photocurrents,” IBM J. Res. Dev. May 1977, 227-244.
Yeh, C.C., et al., “Phines: A Novel Low Power Program/Erase, Small Pitch, 2-Bit per Cell Flash Memory,” IEDM Tech Digest 2002, 931-934.
Hijaya, S., et al., “High-Speed Write/Erase EAROM Cell with Graded Energy BAnd-Gap Insulator,” Electronics and Comm in Japan, Part 2, vol. 68, No. 2, Jun. 6, 1984, 28-36.
Hinkle, C.L., et al., “Enhanced tunneling in stacked gate dielectrics with ultra-thin HfO2 (ZrO2) layers sandwiched between thicker SiO2 Layers,” Surface Science Sep. 20, 2004, vol. 566-568, 1185-1189.
Buckley, J., et al., “Engineering of ‘Conduction band—Crested Barriers’ or ‘Dielectric Constant—Crested Barriers’ in view of their application of floating-gate non-volatile memory devices,” VLSI 2004, 55-56.
Takata, M., et al., “New Non-Volatile Memory with Extremely High Density Metal Nano-Dots,” IEEE IEDM 03-553, 22.5.1-22.5.4.
Lee, Chungho, et al., “Operational and Reliability Comparison of Discrete-Storage Nonvolatile Memories: Advantages of Single-and Double-Layer Metal Nanocrystals,” IEEE IEDM 03-557, 22.6.1-22.6.4.
Baik, Seung, et al., “High Speed and Nonvolatile Si Nanocrystal Memory for Scaled Flash Technology using Highly Field-Sensitive Tunnel Barrier,” IEEE IEDM 03-545, 22.3.1-22.3.4.
Lee, Chang, et al., “A Novel SONOS Structure of SiO2/SiN/AI2O3 with TaN Metal Gate for Multi-Giga Bit Flash Memeries,” IEEE 2003, 4 pages.
Cho et al., “Simultaneous Hot-Hole Injection at Drain and Source for Efficient Erase and Excellent Endurance in SONOS Flash EEPROM Cells,” IEEE Electron Device Lett., vol. 24, No. 4, Apr. 2003, 260-262.
Shih et al., “A Novel 2-bit/cell Nitride Storage Flash memory with Greater than 1M P/E-cycle Endurance,” IEEE IEDM 2004, pp. 36.3.1-36.3.4.
Blomme, et al., “Multilayer tunneling barriers for nonvolatile memory applications,” 60th Device Research Conf., 2002, Conf. Digest 153-154.
Blomme, et al., Write/Erase Cycling Endurance of Memory Cells with SiO2/HfO2 Tunnel Dielectric, IEEE Trans on Device and Materials Reliability, vol. 4, No. 3, Sep. 2004, 345-351.
Govoreanu, et al, “Variot: A Novel Multilayer Tunnel Barrier Concept for Low-Voltage Nonvolatile Memory Devices,” IEEE Electron Device Lett., vol. 24, No. 2, Feb. 2003, 99-101.
Govoreanu et al., “Simulation of Nanofloating Gate Memory with High-k Stacked Dielectrics,” IEEE SISPAD Int'l Conf. 305 Sep. 2003, 299-302.
Govoreanu et al., “An Investigation of the Electron Tunneling Leakage Current through Ultrathin Oxides/High-k Gate Stacks at Inversion Conditions,” IEEE SISPAD Int'l Conf. Sep. 3-5, 2003, 287-290.
Kim et al., “Robust Multi-bit Programmable Flash Memory Using a Resonant Tunnel Barrier,” Electron Dev. Mtg. Dec. 5-7, 2005, IEDM Tech Dig. 861-864.
Likharev, “Layered tunnel barriers for nonvolatile memory devices,” Applied Physics Lett, vol. 73, No. 15, Oct. 1998, 2137-2139.
Sung, et al., “Multi-layer SONOS with Direct Tunnel Oxide for High Speed and Long Retention Time,” IEEE 2002 Nanoelectronics Workshop, Jun. 2002, 83-84.
Aminzadeh et al., “Conduction and Charge Trapping in Polysilicon-Silicon Nitride-Oxide-Silicon Structures under Positive Gate Bias,” IEEE Transactions on

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Structure and method of sub-gate and architectures employing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Structure and method of sub-gate and architectures employing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structure and method of sub-gate and architectures employing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4004740

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.