Optical waveguides – With optical coupler – Switch
Reexamination Certificate
2001-07-25
2003-07-15
Healy, Brian (Department: 2874)
Optical waveguides
With optical coupler
Switch
C385S016000, C385S014000, C438S022000, C438S029000, C438S031000
Reexamination Certificate
active
06594414
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to semiconductor structures and devices and to methods for their fabrication. More specifically the invention relates to the fabrication and use of semiconductor structures, devices, and integrated circuits that include optical switching devices.
BACKGROUND OF THE INVENTION
Semiconductor devices often include multiple layers of conductive, insulating, and semiconductive layers. Often, the desirable properties of such layers improve with the crystallinity of the layer. For example, the electron mobility and band gap of semiconductive layers improves as the crystallinity of the layer increases. Similarly, the free electron concentration of conductive layers and the electron charge displacement and electron energy recoverability of insulative or dielectric films improves as the crystallinity of these layers increases. Further, improvement to the phenomenon of piezoelectricity occurs with improvements in crystallinity of the layer. A monocrystalline piezoelectric layer exhibits greater piezoelectric effect compared to polycrystalline films of the same or similar material. Therefore, structures including this monocrystalline film are capable of producing a stronger electronic signal per amount of deformation in the film, and conversely, exhibit greater deformation per amount of electric field applied to the film.
For many years, attempts have been made to grow various monolithic thin films on a foreign substrate such as silicon (Si). To achieve optimal characteristics of the various monolithic layers, however, a monocrystalline film of high crystalline quality is desired. Attempts have been made, for example, to grow various monocrystalline layers on a substrate such as germanium, silicon, and various insulators. These attempts have generally been unsuccessful because lattice mismatches between the host crystal and the grown crystal have caused the resulting layer of monocrystalline material to be of low crystalline quality.
If a large area thin film of high quality monocrystalline material was available at low cost, a variety of semiconductor devices could advantageously be fabricated in or using that film at a low cost compared to the cost of fabricating such devices beginning with a bulk wafer of semiconductor material or in an epitaxial film of such material on a bulk wafer of semiconductor material. In addition, if a film of high quality monocrystalline material could be realized beginning with a bulk wafer such as a silicon wafer, an integrated device structure could be achieved that took advantage of the best properties of both the silicon and the high quality monocrystalline material.
Further, if the film of high quality monocrystalline material were to provide for piezoelectric qualities, various applications could benefit. Piezoelectric qualities permit a material to bend, expand or contract when an electric field is applied thereto. Nanoengineering, surface acoustic wave, and optics are some of the areas that would benefit from increased quality of piezoelectric components.
Accordingly, a need exists for a semiconductor structure that provides a high quality piezoelectric film or layer and for a process for making such a structure. In other words, there is a need for providing the formation of a monocrystalline substrate that is compliant with a high quality monocrystalline material layer so that true two-dimensional growth can be achieved for the formation of quality semiconductor structures, devices and integrated circuits having grown monocrystalline film having the same crystal orientation as an underlying substrate. This monocrystalline material layer may be comprised of a semiconductor material, a compound semiconductor material, a piezoelectric material and other types of material such as metals and non-metals.
REFERENCES:
patent: 3670213 (1972-06-01), Nakawaga et al.
patent: 3766370 (1973-10-01), Walther
patent: 3802967 (1974-04-01), Ladany et al.
patent: 4006989 (1977-02-01), Andringa
patent: 4284329 (1981-08-01), Smith et al.
patent: 4398342 (1983-08-01), Pitt et al.
patent: 4404265 (1983-09-01), Manasevit
patent: 4424589 (1984-01-01), Thomas et al.
patent: 4482906 (1984-11-01), Hovel et al.
patent: 4484332 (1984-11-01), Hawrylo
patent: 4523211 (1985-06-01), Morimoto et al.
patent: 4667088 (1987-05-01), Kramer et al.
patent: 4756007 (1988-07-01), Qureshi et al.
patent: 4772929 (1988-09-01), Manchester
patent: 4777613 (1988-10-01), Shahan et al.
patent: 4793872 (1988-12-01), Meunier et al.
patent: 4802182 (1989-01-01), Thornton et al.
patent: 4815084 (1989-03-01), Scifres et al.
patent: 4841775 (1989-06-01), Ikeda et al.
patent: 4845044 (1989-07-01), Ariyoshi et al.
patent: 4855249 (1989-08-01), Akasaki et al.
patent: 4868376 (1989-09-01), Lessin et al.
patent: 4876219 (1989-10-01), Eshita et al.
patent: 4882300 (1989-11-01), Inoue et al.
patent: 4891091 (1990-01-01), Shastry
patent: 4896194 (1990-01-01), Suzuki
patent: 4912087 (1990-03-01), Aslam et al.
patent: 4928154 (1990-05-01), Umeno et al.
patent: 4963508 (1990-10-01), Umeno et al.
patent: 4963949 (1990-10-01), Wanlass et al.
patent: 4999842 (1991-03-01), Huang et al.
patent: 5055445 (1991-10-01), Belt et al.
patent: 5060031 (1991-10-01), Abrokwah et al.
patent: 5063166 (1991-11-01), Mooney et al.
patent: 5081062 (1992-01-01), Vasudev et al.
patent: 5116461 (1992-05-01), Lebby et al.
patent: 5127067 (1992-06-01), Delcoco et al.
patent: 5141894 (1992-08-01), Bisaro et al.
patent: 5144409 (1992-09-01), Ma
patent: 5155658 (1992-10-01), Inam et al.
patent: 5159413 (1992-10-01), Calviello et al.
patent: 5173474 (1992-12-01), Connell et al.
patent: 5185589 (1993-02-01), Krishnaswamy et al.
patent: 5194397 (1993-03-01), Cook et al.
patent: 5221367 (1993-06-01), Chisholm et al.
patent: 5225031 (1993-07-01), McKee et al.
patent: 5248564 (1993-09-01), Ramesh
patent: 5270298 (1993-12-01), Ramesh
patent: 5286985 (1994-02-01), Taddiken
patent: 5293050 (1994-03-01), Chapple-Sokol et al.
patent: 5310707 (1994-05-01), Oishi et al.
patent: 5314547 (1994-05-01), Heremans et al.
patent: 5326721 (1994-07-01), Summerfelt
patent: 5356831 (1994-10-01), Calviello et al.
patent: 5358925 (1994-10-01), Neville Connell et al.
patent: 5367585 (1994-11-01), Chezzo et al.
patent: 5371734 (1994-12-01), Fischer
patent: 5391515 (1995-02-01), Kao et al.
patent: 5393352 (1995-02-01), Summerfelt
patent: 5404581 (1995-04-01), Honjo
patent: 5405802 (1995-04-01), Yamagata et al.
patent: 5406202 (1995-04-01), Mehrgardt et al.
patent: 5418216 (1995-05-01), Fork
patent: 5418389 (1995-05-01), Watanabe
patent: 5436759 (1995-07-01), Dijaili et al.
patent: 5442191 (1995-08-01), Ma
patent: 5442561 (1995-08-01), Yoshizawa et al.
patent: 5444016 (1995-08-01), Abrokwah et al.
patent: 5450812 (1995-09-01), McKee et al.
patent: 5453727 (1995-09-01), Shibasaki et al.
patent: 5478653 (1995-12-01), Guenzer
patent: 5480829 (1996-01-01), Abrokwah et al.
patent: 5482003 (1996-01-01), McKee et al.
patent: 5491461 (1996-02-01), Partin et al.
patent: 5492859 (1996-02-01), Sakaguchi et al.
patent: 5494711 (1996-02-01), Takeda et al.
patent: 5514484 (1996-05-01), Nashimoto
patent: 5515047 (1996-05-01), Yamakido et al.
patent: 5515810 (1996-05-01), Yamashita
patent: 5528067 (1996-06-01), Farb
patent: 5528414 (1996-06-01), Oakley
patent: 5556463 (1996-09-01), Guenzer
patent: 5576879 (1996-11-01), Nashimoto
patent: 5577137 (1996-11-01), Groger et al.
patent: 5588995 (1996-12-01), Sheldon
patent: 5606184 (1997-02-01), Abrokwah et al.
patent: 5614739 (1997-03-01), Abrokwah et al.
patent: 5640267 (1997-06-01), May et al.
patent: 5656382 (1997-08-01), Nashimoto
patent: 5670798 (1997-09-01), Schetzina
patent: 5674366 (1997-10-01), Hayashi et al.
patent: 5679965 (1997-10-01), Schetzina
patent: 5729394 (1998-03-01), Sevier et al.
patent: 5729641 (1998-03-01), Chandonnet et al.
patent: 5733641 (1998-03-01), Fork et al.
patent: 5735949 (1998-04-01), Mantl et al.
patent: 5741724 (1998-04-01), Ramdani et al.
patent: 5764676 (1998-06-01), Paoli et al.
patent: 5777350 (1998-07-01), Nakamura et al.
patent: 5778018 (1998-07-01)
Barenburg Barbara Foley
Lempkowski Robert
Lian Keryn
Tungare Aroon
Healy Brian
Motorola Inc.
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
Wood Kevin S.
LandOfFree
Structure and method of fabrication for an optical switch does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Structure and method of fabrication for an optical switch, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structure and method of fabrication for an optical switch will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3109947