Structure and method for joining parts

Metal working – Method of mechanical manufacture – Assembling or joining

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S463000, C138S120000, C138S166000, C138S168000

Reexamination Certificate

active

06634076

ABSTRACT:

TECHNICAL FIELD
The present invention relates to an article of manufacture comprising a partial or complete tubular primary part defining a tube axis and having an at least partially curved circumferential wall at least partially encircling the axis; said wall comprising a joint edge, defining a) a joint line along said edge on said wall, b) a joint plane drawn to contain said joint line, c) a joining direction having at least a direction component perpendicular to said joint line and said joint plane, d) a locking plane at least partially at the surface or within a section through said wall in which both said joint line and said joining direction lies and e) a normal direction being perpendicular to said joint plane; and at least one locking structure, for mechanically connecting the joint edge to another joint edge on the first par or on another part. The invention also relates to a method for joining such a primary part to a secondary part and joined such parts.
BACKGROUND
Articles comprising parts of generally tube-shaped design have abundant uses, such as in conduits, containers, enclosures, protection sleeves, functional machine parts etc. A frequent problem is to join the tube-shaped part to similar parts or assisting or auxiliary components, such as other tube parts, end closures, handles, couplings, guiding structures etc.
Typical problems and requirements in joining tubular parts to secondary components for example is to secure both axial and angular immobility therebetween. It may be of interest to provide for either a releasable or a permanent locking of the parts, in the latter case perhaps with the additional requirement that an inadvertent or unauthorized release effort can be detected. The parts should be easily connected, either when joined manually or by machinery in automated production, and perhaps include guiding structures for proper orientation and alignment. It should be possible to join the parts either in free or predetermined angular relationship. The parts themselves should be easily produced and material selection as free and individual as possible. The demands become exaggerated when high demands are placed on purity, quality, tolerances and strength, where size limitations are severe, e.g. when internal or external dimensions are critical or when thin materials are involved.
Prior art methods do not meet all these requirements or even a more limited set of demands in specific situations or applications. Existing joining principles are basically of two types. Either a mechanical lock is provided in which physical structures on the parts engage to provide the fitting desired. Well known examples are common threads, bayonet couplings, snap locks etc. Typical examples are disclosed in JP 59-85713, GB 2 257 464, EP 437 909, EP 448 329, JP 59-64321 and DE 43 23 124. Common to such solutions is that the parts to be joined in some way overlap and build on lateral dimensions. In case of tube shaped components either inner or outer space has to be sacrificed, the former creating problem e.g. when articles of predefined shape are to be housed therein and the latter e.g. when the joined parts are to be accommodated in secondary devices of limited size. A uniform cross-section over length may be a requirement, e.g. in case of movable parts. Even when size is not a primary concern the overlap makes smooth transition sections and couplings difficult. Although problems of this kind may be cured by adding material to the extent necessitated by the widest part, such solutions may be entirely unsatisfactory with respect to cost, weight, component thickness, transparency and other considerations. The other main joining principle is to utilize gluing, welding, fusing etc., adhering the parts with material adhesion or consolidation, rather than structure. Proper use of such methods may provide joints with a design freedom corresponding to constructions in a single homogeneous or integral material. There are other severe limitations, however. The joint is irreversible and releasable fittings generally cannot be made. Material selection for the parts is highly restricted. Manufacture require advanced equipment and is time consuming in that heating, cooling, drying, hardening or curing steps are involved. The parts need fixture support during such steps until supportive strength has developed and still the joint area may contain potentially destructive stresses, inclusions and irregularities. Adhesives, melts and solvents are sources of contaminants and the common practice of grinding the final joint to specified tolerance and finish causes severe particle generation, unacceptable in high purity applications, as in connection with pharmaceutical products.
Accordingly there remains a need for improved joining methods and structures, better meeting the requirements exemplified hereinabove, especially in connection with tubular parts and components, and in particular methods and structures unifying the advantages of mechanical and material consolidating joining principles.
SUMMARY OF INVENTION
A main object of the present invention is to provide joining principles, including methods and structures, meeting the requirements and avoiding the abovesaid disadvantages of current technology. A more specific object is to provide such principles suitable when at least one of the parts to be joined has tubular characteristics. Another object is to provide such joining principles unifying the advantages of mechanical and material consolidating principles. Still another object is to provide such joining principles needing only mechanical locking of parts, yet providing advantages of material consolidating locking. Yet another object is to offer such principles not requiring overlapping parts or undue lateral dimension expansion. A further object is to offer such principles offering locking in axial, radial and annular directions. Another object is to offer such principles permitting either permanent or releasable locking. Still another object is to provide for simple and rapid joining, if desired with certain guiding of the parts to be joined to intended orientation. Yet another object is to offer principles suitable for joining also thin materials. A final object is to provide joining principles for parts of variable material selection, simple structural design and ease of manufacture.
These objects are reached with the characteristics set forth in the appended patent claims.
By basically utilizing a mechanical joining principle for the articles, structures and methods of the invention several of the abovesaid advantages and objects are reached. Clean and rapid joining without time delays or high fixture demands are possible, producing joints without unpredictable material faults or weaknesses. Material selection for the parts is highly selectable and individual. Permanent or releasable joints can be produced selectably simply by controlling access to the joining or locking structures. Use of hook structures as mechanical locking means, in contrast to e.g. threads, facilitates locking in all directions such as axial, radial and angular and proper distribution may allow the structures to either key together in a single orientation or in multiple arbitrary orientations. It further allows rapid quick-lock designs requiring few or even a single joining step, highly appropriate for either manual or automated assembly. By positioning the critical hook structures, such as bend and undercut respectively, in the same plane as the joint line, lateral overlap of the parts or their respective joining structures is no longer needed. Hereby purely axial joining, as when using the material consolidation joining principles, is possible allowing assemblies with uniform cross-sections, smooth transition sections, minimum and maintained dimensions and optimal strength to thickness joints, also when joining parts of thin materials. This orientation of the joining structures also provides for a certain self-orientation and position stabilization of the parts during the assembly movement, which further s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Structure and method for joining parts does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Structure and method for joining parts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structure and method for joining parts will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3134697

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.