Stock material or miscellaneous articles – Structurally defined web or sheet – Longitudinal or transverse tubular cavity or cell
Reexamination Certificate
1998-01-23
2001-08-21
Loney, Donald (Department: 1772)
Stock material or miscellaneous articles
Structurally defined web or sheet
Longitudinal or transverse tubular cavity or cell
C428S036910, C428S397000, C428S036300, C043S01810R, C043S018500
Reexamination Certificate
active
06277473
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to structural members.
In a previously filed application, an invention was disclosed relating to rods and shafts which are suitable for use in the construction of tapered and parallel edged fishing rods, golf shafts, yacht masts, sailboard masts and the like.
Fishing rods, golf shafts, yacht masts, sailboard masts, and the like are generally constructed of fibre-resin composites or metal in the form of solid rods or tubes. Hollow composite rods are accepted as being superior in performance to solid composite rods in light weight uses but they are delicate and easily damaged. Solid metal rods and metal tubes are generally inferior in flexural characteristics to the composite rods. It will be apparent to the skilled person that the teaching of rod or shaft construction in the above arts may be effectively applied to other heavier, industrial or civil engineering uses as well.
Tapered, tubular composite rods require expensive, accurately ground metal mandrels to produce the taper necessary for the desired performance and there are considerable difficulties in manufacturing with uniform wall thickness. An attempt to overcome to some extent the problems associated with tubular rod manufacture from composite materials is the subject of U.S. Pat. Nos. 4,582,758 and 5,229,187 (referred to herein respectively as Bruce & Walker and McGinn), the enabling teaching of which are incorporated herein.
Both patents relate to the provision of rods of polygonal cross-section formed by a plurality of elements of certain geometrical cross-section. Bruce & Walker describes that each of the elements has a base part of a fibre reinforced plastic material and an apex of part of a rigid plastic material foam.
McGinn, on the other hand, adopted a method of using T-sections made from fibre reinforced plastic material. The method by which the joints of the top ends of T-sections in McGinn are joined is shown in
FIG. 5
of that patent. It is seen that the top ends of the T-sections must be molded or machined to a relatively small tolerance to accommodate matching of the several faces of the T-sections to each other. Both these rods, while they solve wall thickness variation problems and obviate the need for expensive mandrels for forming are difficult to make in the required thickness.
Bruce & Walker experience difficulties in the required stiffness for heavy load application such as are encountered in deep sea fishing and similar application without resorting to excessive composite wall thickness. The technology applied by McGinn addresses the stiffness required in heavy load application, but the mere nature of this technology reduces the ability to make the rods flexible for fly rod application in the various line weights required. Neither invention has adequately addressed the problem of torque encountered in small structures such as golf shafts.
The problem is severe in the case of Bruce & Walker. The McGinn technology has gone some way to addressing this problem with sufficient torque being removed from fishing rods to make them user acceptable. However, the problem of torque is highlighted when both products are used as golf shafts. Any torque in the shafts alters the angle of the golf club head when it comes in contact with the ball, which is unacceptable to the playing golfing public.
It is therefore one object of the present invention to provide a rod, shaft, etc., which obviates or at least minimizes the aforementioned disadvantages of conventional rods and those of Bruce & Walker and McGinn.
SUMMARY OF THE INVENTION
The present invention is a general structural member assembly. Two embodiments of a a basic structural unit of the present invention have two adjacent shafts, both further having a cross sectionally triangular shape with a longitudinal side completely or substantially mostly removed. The “open” side, i.e., the side completely or substantially mostly removed, in cross section presents two “leg” ends, i.e., the ends distal to the vertex of the longitudinal sides that at structurally intact and maintain the vertex of the two solid sides and such that the legs are approximately equal in length. The leg ends are formed or machined such that they present two outward surfaces generally parallel to the the open face of a first adjacent shaft. The outward surfaces of the leg ends are then positionally fixed, albeit with some flexible movement in some embodiments, to generally have a parallel and longitudinal interface with the longitudinal outside edges of a solid side of a second shaft. Additional shafts may be added in this open side opposed to solid side basic assembly unit to form a single joined polygonal shaft assembly where all of the open sides are enclosed with a solid side, the additions proceeding in a circular fashion to form a polygonal cross section of exceptional strength and torsional resistance. Where a more extensive structure is desired, additional whole or partial sections of these joined polygonal shafts may be joined along one or more of their solid faces longitudinally along the solid faces of a first joined polygonal shaft, or portion thereof, at least preserving one basic structural unit of an open side positionally fixed to a closed side.
In the first of the two above embodiments, the open side completely lacks any portion of the longitudinal face of the triangular cross section of the adjacent shafts. The second of the two above embodiments comprises two short opposing extensions from the ends of the solid sides without such in the first embodiment, such that a short portion of the open side is formed along those legs to improve flexing strength.
In a third embodiment of a basic structural unit, two adjacent shafts also have open sides, a first adjacent shaft having solid sides and legs similar to those of the first embodiment except that an outside facing solid side has a cross section first length that is longer than that of the joined polygon enclosed solid side by about the thickness of a solid side. A second adjacent shaft also has an outside facing solid side of about the same cross section length and leg surface as that of the first adjacent leg. The joined polygon enclosed solid side of the second adjacent shaft also has the same length as its outside facing solid side, although it is further extended from its leg end in a direction such that the leg surface of the shortened leg of the first adjacent shaft presses in a force transmitting connection on an inside surface of the extension of the second adjacent shaft in an assembled arrangement as a basic structural unit. The assembled and combined cross section length of the shortened joined polygon enclosed solid side of the first adjacent shaft with the thickness of the extension of the joined polygon enclosed solid side of the second adjacent shaft then presents an outside surface of the extension as a leg surface effective with the leg surface of the outside facing solid side of the first adjacent shaft to then fixedly oppose the outside surface of a joined polygon enclosed solid side of another adjacent shaft such as that of the second adjacent shaft.
It is a further improvement of the present three basic structural units to provide single layer or laminar binding around the outside facing solid sides of a joined polygonal shaft assembly without any further securement, gluing, welding, bolting, soldering or the like between the adjacent shafts such that the adjacent shafts remain in positions sufficiently fixed to effect the support required of their application. This wrapped, un-secured embodiment is useful when sliding flexure of the adjacent shafts are desired, especially when a type of bending or twisting force is not so great as to break down the surrounding support.
It is a further improvement of the present three basic structural units to provide a single bonded axial connection to the central axis of the joined polygonal shafts, whereby the bonding may be accomplished with glues, expoxies, weld connections, solder or other methodologies (such as
LandOfFree
Structural member assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Structural member assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structural member assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2545815