Static structures (e.g. – buildings) – Openwork; e.g. – truss – trellis – grille – screen – frame – or... – Three-dimensional space-defining
Reexamination Certificate
2000-03-16
2002-06-04
Friedman, Carl D. (Department: 3635)
Static structures (e.g., buildings)
Openwork; e.g., truss, trellis, grille, screen, frame, or...
Three-dimensional space-defining
C052S653100, C052S654100, C052S656900, C052S665000, C403S170000, C403S255000, C403S297000, C403S340000
Reexamination Certificate
active
06397551
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to structural framework systems such as may be utilized in the construction of prefabricated buildings or temporary and semi-permanent structures, for example display stands at exhibitions and showroom accommodation.
2. Background Art
Current framework construction systems are either crude, like scaffolding, making them difficult to waterproof, or require many specific components for various situations. Moreover, few systems have the flexibility to accommodate multi-storey or bespoke layouts with full reusability and fast assembly.
Aluminum frame structures conveniently rely heavily on screw-threaded fasteners, but aluminum itself is too soft to maintain a durable thread thereby forcing the use of rivet-on nuts and other steel threaded insert systems. Such systems require delicate use in often onerous conditions. When they fail in use such systems are very difficult if not impossible to repair.
It is thus an object of the present invention to provide a relocatable structure system in which the above mentioned disadvantages are overcome or at least substantially reduced.
BRIEF SUMMARY OF THE INVENTION
According to the present invention in one of the aspects there is provided a structure system where a linkage between individual frame members is effected using a pressed-in actuating element to position and hold a locking catch into a mating linear feature.
In one preferred embodiment of the present invention which is described in detail hereinafter, mating features of interconnectable frame members are formed as extruded parts and are effective symmetrically as a dovetailed joint, enabling connections to be made from two orthogonal directions. In one component of the described structure system the mating dovetail features occur at a chamfer angle at the vertices of a substantially square beam section such that panels or further beams are attachable to continue any of the orthogonal surface planes of the beam, such attachment being effected by hooking a feature of the further structural member to one side of the beam dovetail and engaging the locking catch on the other side of the beam dovetail by operation of a plurality of spaced apart actuating elements.
In the abovementioned embodiment the actuating elements comprise pins which are locatable in respective recesses in the further structural member for engaging upon movement into the recess a moveable catch element which moves to lock the parts together. Conveniently, the actuating elements are elongate tapered pins having a high-helix, multi-start, low-profile surface protrusion and a head formed to enable rotation of the pin, for example by means of a hex tool. The high helix topography causes the pins to rotate as they are tapped home and then ensures that they cannot be accidentally extracted. To remove a pin, a tool is used to rotate it by a partial turn and the rotation of the helix profile causes the pin to be slightly extracted. Because it is tapered, once the pin is a little loose it can be readily removed.
The recess into which the actuating pin extends communicates with a recess adapted to accommodate the catch element which is preferably generally L-shaped in cross-section and is arranged so that, when the actuating pin is not in place, the catch element can be retracted substantially into its accommodating recess so as to be inoperative and, when the actuating pin is inserted, the catch element is moved so as to project from the recess for engaging another of the interconnectable frame members to lock the two together. The catch member can include a surface complementary to and engageable by the actuating pin to effect operation of the catch, or alternatively the catch can be formed of a relatively soft material such as aluminum which can be deformed by coaction with a harder material actuating pin.
The dovetail joint can advantageously include a weather seal located in one of its mating surfaces to seal the connection. An annular weather seal can also be provided in the recess for the actuating pin to seal the actuating pin once it is fully inserted into its recess.
Construction beams used in the structure system of the present invention are conveniently of a hollow rectangular box section having internal webs to add strength to the beam. End blanking components are attachable to the ends of the beam and the blanking components can advantageously have complementary mating features to allow connection of the blanked off end of a beam with the dovetail feature of a further beam extending transversely thereto. Similar 4-way crown components enable nodes to be formed by the joining of plural beam ends.
Preferably, infill pads formed of blastomeric material for example are mountable on either side of a junction between frame members to seal the junction and render it waterproof.
The invention extends furthermore to an adjustment system enabling leg structures to be adjusted in length. In a hereinafter described embodiment of this aspect of the invention a frame member is provided with a circular bore within which a selectively adjustable tubular leg is mounted. Wedges are provided which can be adjusted to secure or release the tube in dependence upon the adjustment of a securing ring, and the surfaces of the wedges which bear on the tubular leg are provided with screw thread sections which can impress a complementary thread on the tubular leg thereby enabling the leg length to be adjusted in a precision manner by relative rotation.
The system of the present invention also extends to an interlocking “shoe” and “foot” arrangement for securing a fabric roof relative to a building structure or the like, and the roof fabric being attached at or adjacent its edge to an elongate foot extrusion which is insertable into an elongate shoe extrusion formed on or secured to the building structure. A toe region of the foot is preferably curved upwardly to engage in a recess below a holding lip of the shoe and a heel of the foot is held in an undercut provided at the heel of the shoe. Preferably, the foot and shoe interconnection is such as to include two heel structures, one behind the other.
Structures formed in accordance with the teachings of the present invention preferably employ extruded aluminum beams, widely regarded in the building industry as the most cost effective material for lightweight structures. Although basically modular, the system is flexible enough to permit a wide variety of support and spans, enabling structures to be tailored into specific forms previously only attainable with premium bespoke solutions. These can include features like balconies, atrium and elevated walkways. The structure system is integrally designed with its own structural platform flooring system which is able to accommodate onerous ground topologies. This minimises the need for site preparation. However, as described hereinafter attention is given to the need to apply ballast to hold structures down and a self leveling soft ground support system is also utilised. Roofing integration permits either usable upper platform space or large span truss frameworks. The relocatable structure system of the present invention proposes a linking system that allows full interchangeability between beams, floor panels, wall panels, roof panels or modules at all orthogonal angles. However, other angles are possible.
The above and further features of the present invention are set forth in the appended claims and will be described hereinafter by reference to exemplary embodiments which are illustrated in the accompanying drawings.
REFERENCES:
patent: 3226897 (1966-01-01), Dorman
patent: 3664011 (1972-05-01), Labastrou
patent: 3828516 (1974-08-01), Kern
patent: 4485597 (1984-12-01), Worrallo
patent: 4556337 (1985-12-01), Marshall
patent: 4750310 (1988-06-01), Holcombe
patent: 5070662 (1991-12-01), Niese
patent: 5333950 (1994-08-01), Zachrai
patent: 5483780 (1996-01-01), Stumpf
patent: 5657604 (1997-08-01), Malott
patent: 5673531 (1997-10-01), Carcedo et al.
patent: 5737893 (1998-0
Bailey Ralph Peter Steven
Lewcock Keith Owen
Friedman Carl D.
Horton Yvonne M.
Lewcock Keith Owen
Sterne Kessler Goldstein & Fox P.L.L.C.
LandOfFree
Structural framework systems does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Structural framework systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structural framework systems will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2943419