Plastic and nonmetallic article shaping or treating: processes – Optical article shaping or treating – Changing mold size or shape during molding or with shrinkage...
Reexamination Certificate
1999-05-25
2001-08-07
Vargot, Mathieu D. (Department: 1732)
Plastic and nonmetallic article shaping or treating: processes
Optical article shaping or treating
Changing mold size or shape during molding or with shrinkage...
C264S328700, C264S328800, C425S808000
Reexamination Certificate
active
06270698
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains generally to the manufacture of objects by injection molding, such as lenses and, more particularly, to the molding of ophthalmic vision correction lenses with injection-coining molding processes.
BACKGROUND OF THE INVENTION
Vision correction and magnification lenses for eyeglasses were originally made of glass. More recently, lenses have been made from polycarbonate material molded in different types of injection molding processes. Polycarbonate lenses are much lighter than glass lenses of the same power, and are sufficiently strong to pass a standardized drop/breakage test, ANSI Z80.1-1995, in which a 0.56 ounce steel ball is dropped from a vertical height of 50 inches on to the center of the lens, even with a relatively thin center thickness in a range of approximately 1.0 to 1.5 mm. However, polycarbonate lenses have the disadvantages of producing birefringence at the perimeter of the lens, and a tendency to yellow with age.
Acrylic material, also referred to as polymethylmethacrylate or PMMA, is a preferred material for optical lenses due to its superior optical properties, light transmittance, reduced weight, and lack of tendency to yellow with age. However, molded acrylic is more brittle than molded polycarbonate, due to its relatively low glass transition temperature, higher density and higher tensile strength. Although magnifying, non-refractive, and positive diopter ophthalmic lenses have been molded out of acrylic, such lenses generally have molded-in stresses, produced by shearing of the material in the molding process, which make them brittle and not able to pass the standard drop ball impact test. Shearing of the acrylic material is also caused by the wide range of thickness across the lens, particularly in the high-minus ophthalmic lenses, which may range from a center thickness of one millimeter to an edge thickness as much as ten millimeters. Discontinuity in the rate of flow of material into the mold cavity also causes shearing which produces birefringence in the molded lens.
In a prescription lens mold cavity, the molten acrylic tends to flow in a generally annular path about the thickest cross-sectional areas of the mold first, and then fills in the thinnest area, for example, at the relatively thin center region of a minus power lens. If not injected into the mold under the correct temperature, pressure and velocity, a weld line will form where the annular flows of material converge, at a point generally opposite the mold gate. Because of the extreme difference in cross-sectional thickness of the mold cavity, the molding material will cool at different rates, resulting in “sinks” or the solidification of the thinner portions before solidification of the thicker portions, also producing molded-in stresses which make the lens brittle and unable to pass the standard impact drop test. Also, molding lenses under relatively high pressures, up to 20,000 psi plastic pressure, produces greater stresses and birefringence in the lens as compared to lenses formed under lower pressure.
Many different approaches have been taken to the injection molding of lenses. In addition to straight injection (which generally produces unsatisfactory results), injection-compression processes, using variable clamp pressures on the movable half of the mold, and insert mold assemblies have been used. Also, in traditional injection-compression processes the halves of the mold are separated to a visible extent, e.g. up to 2 or 3 mm during the filling phase, making the rate of cavity fill critical to avoid blow-out of material between the mold halves. This type of consistent close process control is made more difficult when using acrylic because of its relatively low glass transition temperature, and for this reason it has been avoided as a material for lenses with high thickness variation.
With insert mold assemblies, there is typically some type of movable insert within one or both of the mold halves, which are movable relative to the mold cavity, to change the volume of the cavity during the molding process. In some systems, movement of the inserts is controllable independent of the clamp force. Insert control mechanisms of the prior art are typically complex and duplicated for each cavity of the mold, making them expensive and difficult to maintain. Also, the movement of the inserts must be controlled precisely in accordance with the introduction of material into the mold cavity in order to achieve the desired optically clear results.
SUMMARY OF THE INVENTION
The present invention provides an improved method and process for injection-coining molding of positive and minus diopter lenses out of acrylic material, which are stress-relieved and able to pass a standardized impact resistance test. As used herein, the term “injection-coining” refers to injection mold processes wherein separation of the mold plates under reduced or less than full tonnage is minimal, e.g. generally less than 0.5 mm. In accordance with a general aspect of the invention, there are provided two different methods of molding acrylic lenses by injection-coining operations, one which uses a two-plate hot runner type mold, and another which uses a three-plate cold runner mold.
The injection-coining molding method performed with a two-plate mold includes the steps of preparing an injection molding machine with mold halves defining a mold cavity in the form of an ophthalmic lens having varying cross-sectional thickness, wherein one of the mold halves is movable relative to the other; providing a source of acrylic resin for injection by an injection screw into the mold cavity through a mold gate; positioning a movable mold half to an open position; closing the mold under a primary clamp pressure followed by an intermediate pause between the mold halves; controlling the injection screw to advance material into the mold until the mold is approximately 90% filled and the machine's velocity changeover position is made, closing the mold halves together completely thereby coining the material in the mold cavity, increasing the pressure on the mold to full tonnage for a specified period of time; holding the injection screw forward under the specified time and pressure until the mold gate freezes; advancing the injection screw under packing pressure and time; after the packing pressure hold time, retracting the injection screw back to a metering position during which time the material in the mold solidifies; opening the core half of the mold to a stop setpoint with the cavity plate in a collapsed position.
By this two-plate mold injection coining process, a wide range of optically clear ophthalmic lenses, and in particular a wide range of minus diopter power lenses, from approximately −0.25 to approximately −1.50, can be molded of the preferred acrylic material, without molded-in stresses or birefringence, and which are able to pass a standardized impact test, making them suitable for use as eyeglass lenses.
In accordance with another aspect of the invention, a three-plate mold is used in an injection-coining molding operation to form stress-relieved ophthalmic lenses out of acrylic resin by the steps of: preparing an injection molding machine fitted with a three-plate mold having a stationary half, a cavity plate which is movable relative to the stationary half by a distance at least equal to a coining stroke of the injection-coining molding operation, and a movable half or core plate movable relative to the cavity plate and stationary half, the machine being programmed for control of injection-coining parameters including plastic temperature, plastic flow rate, plastic pressure, plastic cooling rate, clamp closing velocity, velocity-pressure (VP) changeover position, and coining stroke of the cavity plate relative to the stationary half of the mold; subsequent steps including activating the injection molding machine and an associated control system by which the mold is controlled to open the movable half of the mold to an open set position, closing the mold
American Greetings Corp.
Arter & Hadden LLP
Vargot Mathieu D.
LandOfFree
Stress-relieved acrylic optical lenses and methods for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Stress-relieved acrylic optical lenses and methods for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stress-relieved acrylic optical lenses and methods for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2518375