Streaming modules

Electrical computers and digital processing systems: multicomput – Computer-to-computer protocol implementing – Computer-to-computer data streaming

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S241000

Reexamination Certificate

active

06311221

ABSTRACT:

BACKGROUND INFORMATION
In a client-server environment, a client computers can communicate with a server to remotely access information stored at the server. The transfer of information between the server and client computer may be provided using standard protocols and software applications. For example, a hypertext markup language (HTML) browser application at a client computer can communicate over the public Internet using TCP/IP and hypertext transfer protocols (HTTP) to receive web pages from a HTTP server. Web pages may include formatted text as well as multimedia elements, such as embedded graphics and sounds. The multimedia elements may be downloaded by the client and presented to a user by a browser application or a “plug in” browser component. Example browser applications include Netscape Navigator 4.0® and Microsoft Internet Explorer 4.0™.
Browser applications used at client computers can use plug-in software to receive audio and video information using a streaming data transmission protocol. A streaming protocol allows information to be presented by a client computer as it is being received. For example, full-motion video can be sent from a server to a client as a linear stream of frames. As each frame arrives at the client, it can be displayed to create a real-time full-motion video display. Audio and video streaming allows the client to present information without waiting for the entire stream to arrive at the client application. Audio and video streaming are provided by, for example, the RealAudio® and RealVideo™ applications from RealNetworks, Inc.
Browser applications may also make use of executable software applets to enhance the appearance of HTML-based web pages. Applets are software programs that are sent from the server to the client in response to a request from the client. In a typical applet use, HTML-based web pages include HTTP commands that cause a browser application to request an applet from a server and to begin execution of the applet. The applet may thereafter interact with a user to gather and process data, may communicate data across a network, and may display results on a computer output device. Applets may be constructed from a programming language which executes in a run-time environment provided by the browser application at the client computer. For example, the Java® programming language from Sun Microsystems, Inc., allows Java applets to be stored at a web server and attached to web pages for execution by a Java interpreter. Java Applets, may be formed from multiple Java Classes. Java Classes include executable Java code that can be downloaded from a server in response to a dynamically generated request to execute the class (a module execution request). If a Java Class is not available to a Java interpreter when an executing applet attempts to access functionality provided by the Class, the Java interpreter may dynamically retrieve the Class from a server. Other programming languages, such as Microsoft Visual Basic® or Microsoft Visual C++ ®, may also be used to create applet-like software modules, such as Microsoft ActiveX™ controls.
Downloadable applets can also be used to develop large and complex programs. For example, a complex financial program may be constructed from a collection of applets. In such a financial program, separate applets may be used to gather information from a user, compute payments, compute interest, and generate printed reports. As particular program functions are required by a user, the applets associated with the required functions can be retrieved from the server. However, as the size of a software application increases, delays associated with retrieving is modules over a network likewise increase and may be unacceptable to end-users. Consequently, an improvement in the transmission of software modules between computers is desirable.
SUMMARY
The invention includes methods and systems for streaming data modules between a first and a second computer. The modules may be streamed regardless of the existence of a “natural” order among the modules. For example, unlike streaming applications that rely on a natural linear ordering of data to determine the data stream contents, the disclosed streaming mechanism is not constrained to operate according to a linear data ordering. Instead, streamed data modules are selected using predetermined criteria that can be independent of the particular data content.
In an exemplary application, the disclosed streaming mechanism can provide user-dependent streaming of software modules. For example, a home banking application may include modules #1 through #5. A first banking application user may, based on the user's input choices at a menu screen, access the modules in the order 1-3-4-5 while a second user may access the modules in the order 2-4-1. For such a banking application, the predetermined criteria used to determine a streaming sequence may detail each user's module usage pattern. Predetermined criteria associated with the application's users may indicate a preferred streaming sequence 1-3-4-5 when the first user is accessing the banking application but may indicate the preferred sequence 2-4-1 when the second user is accessing the application. The streamed sequence may therefore conform to a historical user-dependent access pattern. Other types of predetermined criteria may also be used. The disclosed streaming mechanism may also be use to stream non-executable data such as hypertext markup language data, binary graphics, and text.
In general, in one aspect, the invention features a computer-implemented method of transmitting modules from a first computer to a second computer. At the first computer, a module set is formed by selecting a sequence of modules from a collection of available modules. Each of the selected modules are associated with an application executing at the second computer. The selected modules may be transparently streamed from the first computer to the second computer. The selection of modules is made in accordance with predetermined selection criteria and is independent of the second computer's execution environment.
Implementations of the invention may include one or more of the following features. A module may include non-executable data, such as hypertext markup language data, and/or program code. The selection criteria may be stored in a streaming control database. The streaming control database may include transition records associating weighted values with transitions between selected modules in the collection. Processing of transition record information, such as by using a path determination algorithm, may be used to determine the sequence of modules. The streaming control database may include list records each of which identifies a predetermined sequences of modules. Selection of modules may be made by selecting a list record. Selecting a sequence of modules may include sending data from the second computer to the first computer to identify each module in the sequence or to identify the status of the executing application. For example, data identifying the status may include a series of user input values.
Implementations may also include one or more of the following features. Streaming of the module set may be interrupted, a second sequence determined, and streaming of the second sequence may occur. The streaming of the module set may be interrupted by a request for a particular module that is sent from the second computer to the first computer. For example, a Java Applet may interrupt a stream of Java Classes by attempting to access a Java Class that has not already been streamed to the second computer. A sequence of modules may be streamed and stored at the second computer independent of the executing application. That is, the executing application need not initiate streaming and need not be aware of the streaming process. Streamed modules may be subsequently integrated with the application at the second computer by interconnecting logic in a streamed module with logic in the application.
Implementations

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Streaming modules does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Streaming modules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Streaming modules will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2612803

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.