Surgery – Respiratory method or device – Face mask covering a breathing passage
Reexamination Certificate
1999-04-29
2001-03-06
Lewis, Aaron J. (Department: 3761)
Surgery
Respiratory method or device
Face mask covering a breathing passage
C128S205250
Reexamination Certificate
active
06196223
ABSTRACT:
FIELD OF INVENTION
This invention relates to a kit including a strapless respiratory facial mask for customizing and applying the facial mask to fit the face of many individuals. More particularly, the customized and reusable respiratory mask is sealed tightly to the wearer's facial contours and skin, such that the mask may receive pressurized or non-pressurized gases without leakage of the gases to the surrounding atmosphere. The facial mask can be made to be disposable as well as non-disposable.
BACKGROUND OF THE INVENTION
Respiratory masks, as disclosed in numerous prior art teachings, employ facial straps or head straps in an attempt to bring about a close fit to the wearer's face. There is a need to compress the material of the mask's seal into the wearer's face to make the seal conform to the wearer's facial contours. To accomplish this, the seal cushioning materials of the mask must have sufficient bulk, compressibility and/or sufficient surface area at the periphery of the mask to prevent leakage of the seal. The seal cushioning materials must have flexibility and conformability in order to form a seal to the user's face and also to provide a high degree of comfort when wearing the respiratory mask. In order to provide a good seal of the respiratory mask to the user's face, a high amount of tension must be applied to the frame of the mask, or to the body of the mask, or to the supporting structure of the seal material and this is provided by elastic or cloth straps which may pass over and around the face and head, in order to create a good and sufficient seal. These headgear straps are bulky, uncomfortable, and unaesthetic, but without these elastic straps, a good seal cannot be created by the mask to prevent leakage of the gas being supplied to the respiratory mask.
There are many problems associated with the use of respiratory facial masks. For example, there is the requirement of using head straps or head netting with the mask for maintaining the seal between the respiratory mask and the wearer's facial contours. Elastic straps or stretchable head netting are the primary means of securing the mask to the wearer's face, as these securing means pass over the top of the wearer's head and around the sides of the wearer's head. In many cases these straps and head netting generate considerable tension in order to create and maintain a secure seal on the user's skin. The elastic strap material and the stretchable head netting material are generally uncomfortable when worn, and are typically irritants to the user's facial skin, scalp and hair, particularly if the respiratory mask must be worn for protracted periods of time. In the case of sleep disorder therapy or pulmonary respiratory care where masks are required to be worn for many days or on a permanent basis, such wearing problems are a detriment to successful therapy. Additionally, these head straps and head netting materials are unsightly, bulky and uncomfortable when in use, and the user becomes self-conscious about how it looks and fits, and in some cases, they even refuse to wear the respiratory mask. Again, these wearing problems provide a further detriment to a successful therapy.
Another characteristic problem of prior art respiratory masks, is that the seal for the mask is flexible or the entire respiratory mask is flexible. Such flexible seals are not adequate for producing a tight seal around the user's skin surface area at the periphery of the mask in order to prevent the leakage of gases through the seal. These types of respiratory masks cover the nose and/or mouth area of the patient and are designed in theory to create a continuous seal against the user's face. These masks do not hold their seals because of the individual differences in facial contours and nose dimensions or inadequate sealing materials used for the respiratory mask. Seals have been made from flexible cushioning materials which conform to the face when under compression and tension caused by the elastic straps or stretchable head netting. Cushioning materials include gels, foams, air filled and fluid filled tubes, air bubbles, silicone, urethane, rubber, or other elastomeric materials having recoil and resiliency properties. These aforementioned seal cushioning materials still do not prevent seal leakage of the mask because the adaptability of the material used for the seal is not adequate and the strap tension upon these respiratory masks must be increased to stop the gas leakage. In particular, leakage of pressurized gases around the bridge of the nose causes conjunctivitis. When respiratory masks are uncomfortable, patient's are less likely to comply with wearing the masks for the prescribed amount of time. When the treatment or diagnostic testing for a patient lasts for several hours to several days the patient will only derive a diminished benefit from the foregoing procedures.
It is critical that the retentive forces exerted on the respiratory mask when in use should be limited to the physiological limits of the human skin. A restriction of blood flow in the underlying skin and soft tissue areas has resulted in pain and pressure necrosis among the respiratory masks described in the prior art. This physiological problem occurs in the areas around the bridge of the nose and superior border of the cheek bones where the human face has the greatest facial contour variability and there is less thickness of underlying fat tissue. Many of these prior art masks seem to adapt and seal well in areas where the underlying fat provides a resilient, rebounding cushion which serves to augment the sealing property of the mask's seal cushioning materials. However, in other areas of the face where fat is scant, in order to create a proper and effective sealing action for the respiratory mask, the internal mask pressure must be reduced or strap pressure must be increased. When internal mask pressure is reduced, the maintenance of a specific therapeutic level having an effective positive pressure is lost and the essential therapeutic benefits of the treatment may not be reached to help the patient under treatment. These prior art masks have approached these aforementioned problems by counteracting the forces placed upon the mask by using seal cushioning materials on the outer rim of the mask for cushioning of the face from the compression forces of the headgear straps. This was an attempt to create comfort and reduce elastic strap tension by applying more adaptable and flexible seal materials on the skin contact interface of the mask. Unfortunately, this aforementioned methodology is not routinely successful at eliminating skin trauma, skin irritation and inflammatory reaction to the skin by the patient when wearing these prior art respiratory masks.
There remains a need for a kit to customize a strapless respiratory facial mask to fit the face contours and shapes of various individuals. The respiratory mask should have the capability of being sealed tightly to the wearer's face contours and skin without any skin trauma, irritation, inflammatory reaction, or discomfort to the user's face. In addition, the respiratory mask should have the capability of being sealed tightly to the wearer's facial contours and skin, such that the mask user receives pressurized or non-pressurized gases such as air, oxygen, anesthesia, steam-vapors, and atomized or nebulized medicines without leakage of such substances to the surrounding atmosphere or causing any decreases in gaseous pressure to the wearer. Further, it would be desirable to have a respiratory facial mask and kit which is inexpensive, is simple to customize to the user's face, and has a minimal number of components.
DESCRIPTION OF THE PRIOR ART
Respiratory facial masks of various designs, appearances, styles and materials of construction have been disclosed in the prior art. For example, U.S. Pat. No. 4,467,799 to Steinberg discloses a transparent odor free face mask which covers the mouth and nose area
Belfer William A.
Petillo Phillip
Lewis Aaron J.
Mitchell Teena
Sutton Ezra
LandOfFree
Strapless respiratory facial mask for customizing to the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Strapless respiratory facial mask for customizing to the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Strapless respiratory facial mask for customizing to the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2477748