Dynamic information storage or retrieval – With particular cabinet structure
Reexamination Certificate
2001-03-21
2004-04-06
Watko, Julie Anne (Department: 2652)
Dynamic information storage or retrieval
With particular cabinet structure
Reexamination Certificate
active
06717901
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a storage device employing a replaceable storage medium. More particularly, this invention is concerned with a storage device such as an optical disk drive that employs a replaceable optical disk cartridge and uses a magneto-optical disk stowed in the cartridge.
2. Description of the Related Art
In recent years, the processing ability and processing speed of personal computers have improved, and the capacities of operating systems or application software packages for programs or data have expanded. Under these circumstances, storage devices are required to be compact and low-cost. Moreover, there is an increasing demand for a storage device offering a large storage capacity and a high processing speed.
An optical disk drive has begun to prevail as a storage device capable of meeting the demands for a compact, low cost, large storage capacity, and high processing speed device. An optical disk cartridge having an optical disk stowed in a cartridge is available as an optical disk employed in such an optical disk drive. Along with the prevalence of the optical disk drive employing the optical disk cartridge, there has arisen a demand for resistance to rough handling, stable performance, improved reliability, and reduction in cost.
In the optical disk drive, a stationary optical unit is included for emitting laser light, with which recorded data is read, to an optical disk, and reading and analyzing light reflected from the optical disk. The stationary optical unit is required to be compact. It is necessary to improve the efficiency in incorporating optical elements into the stationary optical. Moreover, the optical elements are required to be reliable.
As mentioned above, the stationary optical unit included in the optical disk drive employing an optical disk cartridge emits laser light with which data recorded on the optical disk is read, and reads and analyzes light reflected from the optical disk. Conventionally, the stationary optical unit is constructed as a unit separate from the body of the optical disk drive. In an effort to meet the recent demand for a compact optical disk drive, an attempt is made to integrate the stationary optical unit into the chassis of the optical disk drive.
For integrating the stationary optical unit into the chassis, a die-cast chassis is used as the chassis, and the stationary optical unit is located on the edge of the chassis. In the stationary optical unit, an outward light path, along which laser light emanating from a light source is propagated to a movable optical system including a carriage that is movable on an optical disk, runs along an extension of a direction of movement of the carriage. A homeward light path, along which light reflected from the optical disk and returned from the movable optical system to the stationary optical unit is split by a beam splitter, and the split laser light is routed to a sensor, runs perpendicular to the outward light path.
When the homeward light path runs perpendicularly to the outward light path in the stationary optical unit, the homeward light path must be isolated from other members of the optical disk drive for fear the members may interfere with the ray axis of the laser. This poses a problem in that the depth of the optical disk increases.
Moreover, if the stationary optical unit is integrated into a die-cast chassis, since the precision in the dimensions of the die-cast chassis is not very high, an auxiliary alignment device must be installed outside the optical disk drive in order to improve the precision in incorporating optical elements into the stationary optical unit. This poses a problem in that man-hours required for incorporating the optical elements into the stationary optical unit increase to raise the cost of the optical disk drive.
Furthermore, a sensor included in the stationary optical unit is locked in a mount using an adhesive. If the adhesion of the adhesive weakens with a rise in ambient temperature, a flexible printed-circuit board having the sensor mounted thereon shifts. This poses a problem in that the reliability of the sensor deteriorates.
SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide a compact inexpensive storage device such as an optical disk drive adaptable to high-density optical disks, and capable of solving the disadvantages of a stationary optical unit integrated into a die-cast chassis. Moreover, the storage device makes it possible to reduce the depth of an optical disk drive, decrease man-hours required to incorporate optical elements into the stationary optical unit, and suppress an increase in the cost of the optical disk drive. Furthermore, the storage device helps improve the reliability of a sensor.
For accomplishing the above object, the present invention presents the first to fifth aspects described below.
In the first aspect of the present invention, a storage device has a first light path and a second light path defined therein. Specifically, along the first light path, laser light emanating from a laser light source is passed through a collimator lens and a beam splitter and routed to a movable optical system that accesses an optical storage medium. Along the second light path, light reflected from the optical storage medium and returned from the movable optical system is split into a plurality of rays by a beam splitter, and one of the rays is routed to a sensor via a servo unit and a condenser. The sensor has the abilities to detect information recorded on the optical storage medium, detect the state of laser light converged on the optical storage medium, and detect a track of the optical storage medium to which laser light is irradiated. An angle at which the second light path meets the first light path is 90°+&agr; where &agr; denotes a positive number.
According to the first aspect, the angle at which the second light path meets the first light path is larger than 90°. Therefore, interference of the second light path with any other component can be avoided, and the overall length of the storage device can be reduced.
In the second aspect of the present invention, the storage device provided from the first aspect has an alignment projection formed on a surface of a servo unit to be disposed on the second light path which is opposed to the second light path. An alignment hole into which the alignment projection is fitted without any gap between them is bored in the bed of the second light path so that the alignment hole will coincide with the alignment projection.
According to the second aspect of the present invention, the man-hours required for disposing the servo unit on the second light path are reduced. This makes it possible to readily manufacture the storage device.
In the third aspect of the present invention, the storage device provided from the first or second aspect has a sensor, which is to be disposed on the second light path, mounted on a flexible printed-circuit board. A sensor-mounted portion of the flexible printed-circuit board is locked in a sensor mount. The other end of the flexible printed-circuit board is coupled to a printed-circuit board placed on the back of the chassis on which the second light path is defined. The sensor mount has a concave part that receives the sensor-mounted portion of the flexible printed-circuit board, and a leading-out groove used to lead the flexible printed-circuit board out of the concave part. A wall against which an end of the sensor-mounted portion of the flexible printed-circuit board abuts is formed on one edge of the concave part. The sensor-mounted portion of the flexible printed-circuit board is locked in the concave part with the end thereof abutting against the wall.
According to the third aspect, the sensor-mounted portion of the flexible printed-circuit board will not be shifted despite a rise in ambient temperature. This leads to improved reliability of the sensor.
In the fourth aspect of the present invention, the storage device provided from the fi
Aoki Jun
Kataoka Masahiko
Maeno Moriyasu
Mizuishi Kazuyuki
Saito Hidenori
Greer Burns & Crain Ltd.
Watko Julie Anne
LandOfFree
Storage device having a chasis integral with a stationary... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Storage device having a chasis integral with a stationary..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Storage device having a chasis integral with a stationary... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3253573