Marine propulsion – Means to control the supply of energy responsive to a sensed...
Reexamination Certificate
2002-08-06
2003-11-25
Basinger, Sherman (Department: 3617)
Marine propulsion
Means to control the supply of energy responsive to a sensed...
C440S002000
Reexamination Certificate
active
06652330
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is generally related to a battery monitoring system and, more particularly, to a system that continually monitors the voltage across the terminals of a storage battery of a marine vessel and, in response to a low voltage potential across the battery, automatically selects electrical loads that are to be shed in order to protect the battery from depletion.
2. Description of the Prior Art
In marine vessel electrical systems, it is very important to protect the electrical storage battery from inadvertent and unexpected depletion. Unlike ground-based vehicles, such as automobiles, tractors, trucks, and motorcycles, a marine vessel with a depleted battery and an inability to start the engine of the marine vessel can be very distant from its home port or any other location where emergency assistance can easily be obtained. Therefore, it is well known to those skilled in the art that the charging and maintenance of an electrical charge across an electrical storage battery of a marine vessel is very important. It is also very important that the use of the battery to provide power for certain electrical loads on the marine vessel be monitored to make sure that the battery isn't inadvertently depleted by running excessive loads without providing an effective recharging of the battery.
U.S. Pat. No. 6,342,775, which issued to Sleder on Jan. 29, 2002, discloses an automatic battery switching circuit for a marine propulsion system. The circuit provides a mechanism by which a plurality of electrical storage batteries can be alternatively connected in parallel or series based on the position of a manually controlled joystick of a marine positioning and maneuvering system. When the joystick is in a neutral position in which no docking motion is demanded by the marine vessel operator, the storage batteries are connected in parallel so that they can benefit from charging by an alternator or generator associated with an internal combustion engine. If the joystick is moved out of its neutral position, the batteries are immediately connected in series to provide power to a plurality of electrical motors that are used to drive a plurality of impellers of the docking system.
U.S. Pat. No. 5,963,013, which issued to Watson et al on Oct. 5, 1999, describes a storage battery charging apparatus and methods. The apparatus and method for charging a battery in a transported apparatus from the electrical system of a transporting vehicle is described. In one aspect of the invention, there is provided a circuit means for determining when a battery has been sufficiently recharged, adapted to be respectively coupled to both the battery of the transported apparatus and the electrical system of the transporting vehicle. The circuit means may include means for determining the status of the battery being charged such as a meter, an array of lights, or an array of light emitting diodes, the number and sequence of illumination being indicative of the extend to which the battery has been recharged.
U.S. Pat. No. 5,896,022, which issued to Jacobs on Apr. 20, 1999, describes a battery charge managing system. A modification kit for the addition of an auxiliary battery charge management system for a marine or land vehicle having a starting battery and an auxiliary battery is described. The kit includes a single pole breaker, a normally-on relay, and a two-way toggle switch. The single pole breaker is inserted in a circuit of the auxiliary battery system and the normally-on relay and the toggle switch are inserted in the starting battery circuit of the vehicle to provide a dual mode charging system adapted to manual and automatic power regeneration of the starting battery and the auxiliary battery system.
U.S. Pat. No. 5,448,152, which issued to Albright on Sep. 5, 1995, describes a battery management system. The system maintains a charge on at least one auxiliary battery by switching the auxiliary battery automatically into parallel with the main battery charging circuit or with the auxiliary load. The system uses the AC component of the charging signal of a vehicle or boat charging system to trigger switching circuits coupled to operate relays or similar switching means which couple the auxiliary battery to the main charging circuit. When no charging signal is present, such as when the vehicle or boat engine is turned off, the auxiliary battery is switched automatically out of the charging system and is charged and in condition for use.
U.S. Pat. No. 5,315,287, which issued to Sol on May 24, 1994, describes an energy monitoring system for recreational vehicles and marine vessels. The invention continuously monitors the current drawn from the on board battery system of a recreational vehicle marine vessel. The device calculates and displays the energy remaining as a portion of the total capacity by accumulating over time the net energy drawn out of the battery. The device accurately accounts for the known effect of effectively lower battery capacities at higher current draws, and also allows the user to reinitialize the battery system capacity to reflect either degradation of the battery capacity with time or upgrades to the battery system.
U.S. Pat. No. 4,468,606, which issued to Quintal on Aug. 28, 1984, describes a system for charging the battery and operating the electrical accessories of a sailboat. The system comprises an alternator having a stator winding adapted for connection to the battery through suitable current rectifiers and a rotor field winding coupled to the auxiliary propeller shaft of the boat. Circuit means for controlling the energization of the field winding of the alternator from the output voltage of the stator winding, so as to permit the alternator to provide adequate current to charge the battery and operate the electrical accessories of the sailboat, and a voltage regulator adapted for connection to the field winding of the alternator for controlling the output voltage of the stator winding when such output voltage reaches a predetermined value.
U.S. Pat. No. 5,126,650, which issued to Iwatani on Jun. 30, 1992, describes an indication device for a vehicle charging and generating system. The device is capable of informing the operator of the relation between the amount of power generation available and the amount of electrical load applied, thereby enabling the operator to turn off unnecessary electrical loads to prevent the overdischarging of a battery. The indication device includes an AC generator having a field coil and driven by a vehicle engine, and a storage battery connected to an electric load and to the generator. A voltage regulator detects the output voltage of the generator or the voltage of the battery and has a power transistor electrically connected in series with the field coil of the generator to regulate the output voltage of the generator at a prescribed level. A converter operates to convert the rate of electrical conduction of the power transistor into a corresponding voltage level, and an indication meter is connected to the converter to display the utilized percentage of power generating capacity of the generator.
U.S. Pat. No. 5,352,929, which issued to Kohl et al on Oct. 4, 1994, describes an apparatus and method for regulating a generator of an internal combustion. The system has a starter device including a charge control signaling device, an excitation coil for the generator and a voltage regulator controlling an excitation current in the excitation coil and an excitation current limiting device for limiting the excitation current during a predetermined starting phase connected to the voltage regulator. The excitation current limiting device detects whether the engine is in a starting phase. If the engine is in a starting phase, the excitation current limiting device reduces the excitation current so that a voltage is produced at a generator terminal which permits no load current and simultaneously guarantees that the charge control signaling device is shut off. After ending of the star
Basinger Sherman
Brunswick Corporation
Lanyi William D.
LandOfFree
Storage battery monitoring system with automatic electrical... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Storage battery monitoring system with automatic electrical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Storage battery monitoring system with automatic electrical... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3167127