Material or article handling – Apparatus for moving material between zones having different... – For carrying standarized mechanical interface type
Reexamination Certificate
2001-01-16
2004-05-25
Lillis, Eileen D. (Department: 3652)
Material or article handling
Apparatus for moving material between zones having different...
For carrying standarized mechanical interface type
Reexamination Certificate
active
06739820
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to stocker apparatus, as employed within multi-step manufacturing processes. More particularly, the present invention relates to stocker apparatus with enhanced efficiency, as employed within multi-step manufacturing processes.
2. Description of the Related Art
Integral to the implementation of complex non-linear multi-step manufacturing processes, such as but not limited to complex non-linear multi-step microelectronic manufacturing processes, further such as but not limited to complex non-linear multi-step semiconductor integrated circuit microelectronic fabrication manufacturing processes, is the use of stocker apparatus for purposes of assisting in the management and sequencing of work in process (WIP) workload under manufacturing conditions that generally include competing product scheduling priorities for multiple product lines fabricated in conjunction with multiple product routings within a single manufacturing facility.
Within the context of complex non-linear multi-step microelectronic manufacturing processes and in particular within the context of complex non-linear multi-step semiconductor integrated circuit microelectronic fabrication processes, stocker apparatus are typically designed and fabricated to accommodate, stock and store a multiplicity of microelectronic fabrication substrate carriers, such as semiconductor substrate carriers, each in turn carrying a multiplicity of microelectronic fabrication substrates, such as semiconductor substrates, in a fashion that provides for random access of the multiplicity of microelectronic fabrication substrate carriers, and the microelectronic substrates carried therein, such as to facilitate optimal non-linear work in process (WIP) workload flow within a complex non-linear multi-step microelectronic manufacturing process as employed within an advanced microelectronic fabrication facility.
While stocker apparatus are thus clearly desirable within the context of complex non-linear multi-step manufacturing processes, such as but not limited to complex non-linear multi-step microelectronic manufacturing processes, and often essential to effectively implement complex non-linear multi-step manufacturing processes, such as but not limited to complex non-linear multi-step microelectronic manufacturing processes, stocker apparatus are nonetheless not entirely without problems in the art of complex non-linear multi-step manufacturing processes, such as but not limited to complex non-linear multi-step microelectronic manufacturing processes.
In that regard, insofar as within the context of complex non-linear multi-step manufacturing processes stocker apparatus will typically by their very nature not maintain an ordered stocking of work in process (WIP) workload, a stocker apparatus will upon increased process demand within a complex non-linear multi-step manufacturing process often provide a bottleneck in operation of the complex non-linear multi-step manufacturing process.
It is thus desirable in the art of complex non-linear multi-step manufacturing processes, such as but not limited to complex non-linear multi-step microelectronic manufacturing processes, further such as but not limited to complex non-linear multi-step semiconductor integrated circuit microelectronic fabrication manufacturing processes, to provide stocker apparatus with enhanced efficiency such that upon increased process demand with respect to a stocker apparatus there is minimal impact to a complex non-linear multi-step manufacturing process within which is employed the stocker apparatus.
It is towards the foregoing object that the present invention is directed.
Various stocker apparatus having desirable properties, as well as stocker systems having incorporated therein stocker apparatus having desirable properties, have been disclosed in the art of complex non-linear multi-step manufacturing processes.
For example, Asakawa, in U.S. Pat. No. 4,986,715, discloses a stocker apparatus for use within a complex non-linear multi-step semiconductor integrated microelectronic fabrication process, wherein the stocker apparatus provides for enhanced efficiency and reduced semiconductor integrated circuit microelectronic fabrication personnel interference when stocking within the stocker apparatus a series of semiconductor substrate carriers having carried therein a series of semiconductor substrates which in turn are fabricated within the complex non-linear multi-step semiconductor integrated circuit microelectronic fabrication process. To realize the foregoing object, a preferred embodiment of the stocker apparatus comprises a series of vertically stacked rotating multi-position circular racks, a series of co-aligned open central portions of which define a core through which is provided a clean air flow to purge through the series of semiconductor substrates carried within the series of semiconductor substrate carriers in turn positioned within the series of positions defined within the series of stacked rotating multi-position circular racks.
In addition, Bonora et al., in U.S. Pat. No. 5,570,990, discloses a stocker apparatus for use within a complex non-linear multi-step semiconductor integrated circuit microelectronic fabrication process, wherein the stocker apparatus provides for enhanced manufacturing flexibility when stocking a semiconductor integrated circuit microelectronic fabrication tool employed for fabricating a semiconductor integrated circuit microelectronic fabrication while employing the complex non-linear multi-step semiconductor integrated circuit microelectronic manufacturing process. To realize the foregoing object, the stocker apparatus comprises a human guided mobile stocker apparatus fabricated in the form of a pushcart, wherein the human guided stocker apparatus further comprises a semi-motorized transport arm in conjunction with a data processor device and a data communications device.
Finally, Fosnight, in U.S. Pat. No. 5,980,183, discloses a stocker system having incorporated therein a stocker apparatus, wherein the stocker system having incorporated therein the stocker apparatus may be employed for stocking within a complex non-linear multi-step semiconductor integrated circuit microelectronic fabrication process a series of related semiconductor integrated circuit microelectronic fabrication tools assembled within a single semiconductor integrated circuit microelectronic fabrication bay within a semiconductor integrated circuit microelectronic fabrication facility. To realize the foregoing object, the stocker system includes within the single semiconductor integrated circuit microelectronic fabrication bay in addition to, and integrated with, the stocker apparatus: (1) a pair of shuttles for transporting a series of semiconductor substrate carriers between the series of related semiconductor integrated circuit microelectronic fabrication tools and the stocker apparatus; and (2) a series of additional localized storage shelving units located adjacent to at least some of the series of related semiconductor integrated circuit microelectronic fabrication tools.
Desirable in the art of complex non-linear multi-step manufacturing processes, such as complex non-linear multi-step microelectronic manufacturing processes, further such as complex non-linear multi-step semiconductor integrated circuit microelectronic manufacturing processes, are stocker apparatus that may be operated with enhanced efficiency.
It is towards the foregoing object that the present invention is directed.
SUMMARY OF THE INVENTION
A first object of the present invention is to provide a stocker apparatus for use within a complex non-linear multi-step manufacturing process.
A second object of the present invention is to provide a stocker apparatus in accord with the first object of the present invention, wherein the stocker apparatus may be operated with enhanced efficiency.
A third object of the present invention is to provide a stocker apparatus in accord with the first object of
Chang Yu-Yen
Lin Kuo-Chen
Fox Charles A.
Lillis Eileen D.
Taiwan Semiconductor Manufacturing Co. Ltd
Tung & Associates
LandOfFree
Stocker apparatus with increased input/output capacity does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Stocker apparatus with increased input/output capacity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stocker apparatus with increased input/output capacity will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3241140