Sterilization-protecting agent and sterilization method

Chemical apparatus and process disinfecting – deodorizing – preser – Process disinfecting – preserving – deodorizing – or sterilizing – Using disinfecting or sterilizing substance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S157970, C422S022000, C422S040000, C435S181000

Reexamination Certificate

active

06572820

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a material comprising a material to be sterilized and a sterilization-protecting agent comprising a trisaccharide or higher saccharide having a positive charge(s); a sterilization method using said sterilization-protecting agent; and said sterilization-protecting agent.
BACKGROUND ART
In recent years, attempts have been made on selective separation, division, removal, etc. of a substance interacting with a biologically active substance (hereinafter referred to simply as an active substance or a ligand), using said active substance; and research has been done on active materials obtained by immobilizing, as a biologically active substance, a ligand such as a peptide, protein, synthetic substance or the like onto a carrier. Investigations have been made particularly on techniques for specifically removing blood cells using an active material obtained by immobilizing a protein such as an enzyme, antibody or the like onto a carrier, or for using said active material as a bioreactor. These active materials, however, are very unstable to sterilization; particularly in the case of an active material having a ligand immobilized thereon, the interactivity of the ligand with a substance to be affected is reduced by sterilization in many cases and it has been difficult to conduct sufficient sterilization of the active material without impairing the activity of the ligand.
In U.S. Pat. No. 5,283,034, a sterilization method is disclosed which comprises conducting sterilization in the presence of a substance (e.g. human serum albumin) used as a surface stabilizer, and a mono- or di-saccharide (e.g. glucose, sucrose, lactose, trehalose or amylose) or a glycoprotein (e.g. immunoglobulin) used as an oxygen radical-capturing agent. In this sterilization method, however, sterilization is possible only in a dry state of less than 1% of water content; consequently, the sterilized material has an inferior priming property and has been difficult to handle.
In JP-A-4-285561, a sterilization method is disclosed which comprises sterilizing a medical appliance comprising a physiologically active protein as a main constituent, in the presence of a mono- or di-saccharide (e.g. sorbitol, mannitol, xylitol or trehalose). In this method, however, the target material to be sterilized is a substance (e.g. fibrin) which is water-insoluble and relatively stable to sterilization; therefore, when the to-be-sterilized material is a substance (e.g. an antibody) whose three-dimensional structure has a large effect on the expression of the activity, nothing was known for protecting the to-be-sterilized material.
Thus, no sterilization-protecting agent has been known sterilization of a ligand (e.g. a protein) having specificity, even in a wet state with the activity of the ligand being maintained.
DISCLOSURE OF THE INVENTION
In view of the above problems, the present invention has an object of providing such a sterilization-protecting agent that, a biological acting substance, can exhibit its function even after having been sterilized. The present invention also has an object of providing such a sterilization method that sterilization of a biological acting substance is possible even in a wet state with the activity of the substance being maintained.
The present inventors made an intensive study in order to solve the above problems. As a result, the present inventors have found that a sterilization-protecting agent comprising a polysaccharide, particularly a trisaccharide or higher saccharide having a positive charge(s) is very effective in sterilization. The present inventors further have found that when the above sterilization-protecting agent is used, a biological acting substance, even if it is a substance (e.g. an antibody) very unstable to sterilization, is surprisingly stable to sterilization in any state ranging from a wet state to a dry state. The finding has led to the completion of the present invention.
Hence, the present invention relates to a material comprising a material to be sterilized and a sterilization-protecting agent, wherein the sterilization-protecting agent comprises a trisaccharide or higher saccharide having a positive charge(s).
The present invention relates further to a sterilization method for material to be sterilized, which comprises sterilizing said material in the presence of a sterilization-protecting agent comprising a trisaccharide or higher saccharide having a positive charge(s).
The present invention relates furthermore to a sterilization-protecting agent comprising a compound containing a trisaccharide or higher saccharide having a positive charge(s).
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the sterilization-protecting agent refers to a material which can protect a material to be sterilized so that the material to be sterilized can, even after the sterilization, maintain its activity and exhibit its function. The present sterilization-protecting agent comprises a trisaccharide or higher saccharide having a positive charge(s).
In the sterilization-protecting agent of the present invention, it is thought that the positive charge(s) can quickly trap a radical generated during the sterilization, that the skeleton of trisaccharide or higher saccharide can increase the stability of a biological acting substance during the sterilization and can trap the above-mentioned radical although the effect is small, and that as a result, a high protection effect during sterilization can be obtained. It is also thought that direct bonding of a positive charge(s) to saccharide skeleton gives an even higher protection effect during the sterilization.
In the present invention, the trisaccharide or higher saccharide having a positive charge(s) refers to a homopolysaccharide wherein at least three monosaccharides of the same kind, each having a positive charge(s) is (are) bonded in series, or a heteropolysaccharide wherein at least three saccharides each having a positive charge(s) is (are) present and also other saccharide(s) is (are) present. Thus, the present polysaccharide must be composed of at least three monosaccharides each having a positive charge(s).
The constituent monosaccharides of the polysaccharide constituting the sterilization-protecting agent of the present invention, include for example, 3-amino-3-deoxy-D-ribose, D-galactosaminuronic acid, D-galactosamine, D-glucosaminuronic acid, D-glucosamine, D-gulosamine, D-talosamine, neosamine C, pneumosamine, D-fucosamine, D-mannosamine, mycaminose, mycosamine and rhodosamine. In the present invention, the polysaccharide is composed of at least three monosaccharides which are at least one of the above monosaccharides. The above monosaccharides (monomers) each have a positive charge(s) owing to the amino group. The constituent monosaccharides of the polysaccharide may be those obtained by replacing the amino group of the above monosaccharide with an imino group.
The polysaccharide is preferably composed of at least three monosaccharides of which at least one monosaccharide is selected from the group consisting of D-galactosamine, D-glucosamine, D-gulosamine, D-talosamine, D-fucosamine, D-mannosamine, mycosamine and rhodosamine.
In the present invention, the polysaccharide is more preferably a chitosan, which is a polymer of D-glucosamine, and/or a chitin which is partially converted into chitosan. The chitosan which is a poly&bgr;1-4-glucosamine, is used most preferably because it has a positive charge(s) owing to the amino group. The chitin which is partially converted into chitosan is a saccharide partially having a poly&bgr;1-4-glucosamine structure as a result of deacetylation of chitin by hydrolysis or the like and must have at least three &bgr;1-4-glucosamine units. The chitin which is partially converted into chitosan is preferably water-soluble. The degree of conversion of chitin into a &bgr;1-4-glucosamine structure by hydrolysis or the like differs depending upon the molecular weight of chitin, but desirably is as high as possible in view of the water-solubi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sterilization-protecting agent and sterilization method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sterilization-protecting agent and sterilization method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sterilization-protecting agent and sterilization method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3106217

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.