Electrical connectors – With insulation other than conductor sheath – Metallic connector or contact secured to insulation
Reexamination Certificate
2003-02-20
2003-11-18
Ta, Tho D. (Department: 2833)
Electrical connectors
With insulation other than conductor sheath
Metallic connector or contact secured to insulation
C439S382000
Reexamination Certificate
active
06648700
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to contact stabilization mechanisms used in electrical connector assemblies, and more particularly to a stepped keying/interface stabilization alignment mechanism operable in an electrical connector assembly.
BACKGROUND OF THE INVENTION
Conventional connector assemblies, as used in automobiles and other vehicles, often face several types of problems. For example, one problem involves the engagement of the connector components. Because the electrical connector assembly is mated and then sealed, it is often difficult, if not impossible, to determine if the corresponding connectors are fully engaged with one another prior to catastrophic fatigue and failure. This is of particular concern when the assembly undergoes periods of vibration, which naturally occurs whenever the vehicle is in movement, or even if it is stationary and the engine is running.
Another problem involves unrestricted and excessive movement of the contact system within the electrical assembly housings, which invariably occurs during these periods of vibration. As such, contact stabilization systems have been devised to provide a proper stabilization of internal components. However, such conventional systems do not provide for proper alignment of internal assembly components, and the conventional designs simply allow too much internal component movement to occur, thereby causing failure of the internal assembly components, and of the assembly housings themselves.
Another problem with the conventional stabilization devices is that it is difficult to determine if the internal components, themselves, have been fully seated within the connector housings, especially after the housings have been sealed. In fact, conventional stabilization mechanisms do not provide a proper manner with which to stabilize the plug housing component of the electrical connector assembly. This causes failures during vibration because the plug housing is not fully captured by the cap housing.
Terminal position assurance (TPA) members have been used to address this problem. For example, a TPA member may be a wedge-shaped structure pre-mounted to the front surface or mating interface of the housing. TPA members are commonly used on electrical connector assemblies, especially on electrical connectors used in the automotive industry. A TPA member is typically a freely movable (floatable) member that can be moved into its proper position only if all of the components in the connector are in their fully inserted position. The TPA member then pushes the internal electrical components and terminals in a direction opposite of terminal engagement, in order to fully seat them with respect to the remainder of the connector housing and then snaps into place.
Another type of TPA member may include an insertable comb. The TPA comb can only be installed after the terminals have been fully inserted into the connector body and, usually, the TPA comb engages a shoulder of the terminal to interferingly prevent withdrawal of the terminals from the housing. Unfortunately, these conventional TPA devices do not provide adequate assurance that the internal terminals and other contact components are fully seated during periods of excessive vibration. Nor do these conventional TPA devices prevent movement of the internal components of the assembly.
As such, the conventional mechanisms do not provide sufficient stabilization for the mated pair assembly. Although the conventional mechanisms use TPA members to align the two mated halves, such TPA members do not provide any benefits to combat against vibration and rocking issues. Generally, because the TPA is a floating component within the assembly, it does not help stabilize the connector system interface.
Therefore, there is a need for a novel stabilization alignment device used in electrical connector assemblies, which prevents damage to internal assembly components during periods of vibration of the assemblies, and which stabilize the connector system by ensuring that the plug and cap housings have a tight fit together.
SUMMARY OF THE INVENTION
In view of the foregoing and other problems, disadvantages, and drawbacks of the conventional contact stabilization mechanisms, various embodiments of the present invention are disclosed herein. It is an advantage of various embodiments of the present invention to provide a stepped keying/interface stabilization alignment mechanism operable in an electrical connector assembly. It is another advantage of embodiments of the present invention to provide a stabilization alignment mechanism used in electrical connector assemblies, which utilizes a freely movable terminal position assurance that provides stabilization for internal assembly components. Still another advantage of the embodiments of the present invention is to provide a stabilization alignment mechanism used in electrical connector assemblies which prevents damage to internal assembly components during vibration. Yet another advantage of embodiments of the present invention is to provide a stabilization alignment mechanism used in electrical connector assemblies which increases the stability of the interface area of the mated assembly during use while simultaneously providing different keying options and alignment ability. A further advantage of embodiments of the present invention is to reduce the number of extra elements necessary to achieve alignment, keying, and stability with all individual features.
In order to attain the advantages suggested above, there is provided, according to one aspect, a stabilization alignment mechanism providing stability for an electrical connector assembly, wherein the stabilization alignment mechanism comprises a cap housing unit having at least one stepped member protruding from an inner wall of the cap housing unit, wherein the stepped member comprises a first portion and a second portion; a terminal position assurance member having a guide slot configured therein for receiving the first portion of the stepped member; and a plug housing unit having a receiving slot configured therein for receiving the first portion of the stepped member, wherein the second portion of the stepped member sits on an outer wall of the plug housing unit. The plug housing unit is slidably and stably mounted inside the cap housing. Moreover, the terminal position assurance member is a movable component within the electrical connector assembly. Furthermore, the first portion of the stepped member is stably mounted between two surfaces of the plug housing unit.
Moreover, a method of stably aligning an electrical connector assembly is provided according to embodiments of the present invention, wherein the method comprises aligning a stepped member into an engaging position, wherein the step member outwardly protrudes from an inner wall of a cap housing, and wherein the stepped member comprises a first portion and a second portion. The second step involves urging the first portion of the stepped member into a guide slot configured in a terminal position assurance member. Next, the first portion of the stepped member is positioned into a receiving slot configured in a plug housing. Finally, the second portion of the stepped member is positioned on an outer wall of the plug housing. According to embodiments of the present invention, the plug housing slidably and stably mounts inside the cap housing. Additionally, the terminal position assurance member is a movable component within the electrical connector assembly, and the first portion of the stepped member stably mounts between two surfaces of the plug housing.
Embodiments of the present invention overcome the several disadvantages of the conventional designs, and in particular, has an advantage over conventional stabilization alignment mechanisms because a stepped keying/interface stabilization alignment mechanism operable in an electrical connector assembly is provided, and which further utilizes a freely movable terminal position assurance that provides stabilization for internal assembly comp
Greiner Robert David
Hoelscher Wolfgang
Peterson Yuvette Tate
Ta Tho D.
Tyco Electronics Corporation
LandOfFree
Stepped/keying interface stabilization alignment mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Stepped/keying interface stabilization alignment mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stepped/keying interface stabilization alignment mechanism will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3114332