Land vehicles – Skates – Shoe attaching means
Reexamination Certificate
1997-12-29
2001-02-20
Mai, Lanna (Department: 3619)
Land vehicles
Skates
Shoe attaching means
C280S624000, C280S625000, C280S014230
Reexamination Certificate
active
06189913
ABSTRACT:
This invention relates to snowboarding, and more particularly to an improved snowboard boot and an improved snowboard binding system for securing the snowboard rider to the snowboard.
BACKGROUND OF THE INVENTION
The sport of snowboarding is an increasingly popular wintertime activity wherein a snowboarding enthusiast (hereinafter “snowboarder”) maneuvers the aboard down a snow-covered slope while standing thereon. To facilitate snowboard maneuvers, the snowboarder requires intimate association with the board and therefore bindings are used for securing the snowboarder's boots to the board.
Boots for snowboarding are characterized as either soft or hard. Soft boots employ a flexible shell to permit foot/ankle flexing. Hard boots have similar insulating features, but have a hardened outer shell more particularly suited for specific applications such as downhill skiing. The standard downhill ski boot is worn by a skier for obtaining a rigid association between the skier's feet and lower legs and the downhill ski. In snowboarding, on the other hand, the snowboarder usually desires tight coupling to the snowboard for assisting board manipulation, but at the same time desires a greater degree of freedom for foot/ankle flexing. Unlike downhill skiing, wherein the boots attach to left and right skis with the toes pointed along the respective longitudinal axes, the boots for snowboarding are mounted to the snowboard so that the snowboarder stands over the board with the toes pointed primarily perpendicular to the longitudinal axis with the feet spaced apart from one another beyond shoulder width. With such foot placement, the methods used for manipulating the snowboard generally require that the snowboarder be permitted a great degree of freedom for foot/ankle flexing.
At least two different types of bindings are available for securing boots to a snowboard depending upon the type of boot worn, i.e., hard and soft. Known hard boot bindings use a two engagement point system, with separate toe and heel pieces which bolt to the snowboard via a mounting plate. The toe piece has an engagement clamp for seating a specifically molded toe projection of the hard boot while the heel piece has a clamping bracket, an engagement lever, and a release lever. The clamping bracket releasably engages a molded heel protrusion of the hard boot when the boot is inserted into the binding, the heel of the boot depressing the engagement lever. In order to release the boot from the binding, the release lever is actuated for releasing the heel bracket so that the skier or snowboarder may step out of the hard boot binding. Other hard boot bindings may be one piece and may engage the heel of the boot only, for example. Such one or two point bindings do not always provide a highly stable base for engagement with the board, for a two point binding may tend to allow excessive flexing to either side of a line defined between the two points.
The elements of a soft boot binding include an optional cant, a seating frame including toe and ankle straps and a calf support, known as a highback. The cant supports the frame and comprises a rectangular block which has a flat upper surface sloped relative to its flat bottom surface. The seating frame includes a plate, a heel bracket, and a toe strap mounting bracket. The plate has a pattern of holes for passing bolts used in mounting the plate to the snowboard, or alternatively to the optional cant. Another popular binding style uses a mounting plate with a relatively large hole in the center, with a corresponding disk, which engages the mounting plate hole. The disk is bolted to the snowboard and thus secures the mounting plate to the board. The boot is held to the board by interaction with the binding plate.
The toe and ankle straps of the soft boot binding have essentially identical elements and functionality except that the length of the ankle strap is generally longer than that of the toe strap. Each strap cooperates with the seating frame for strapping over respective toe and ankle portions of a boot for securing the boot to the frame. The strap system requires, however, that the snowboarder place the boot in the binding and then manually tighten each of the straps in order to secure the boot to the binding.
The known binding systems, however, are somewhat constraining in that they employ a fixed stance and a fixed flexibility for leaning and side-to-side movements. As a rider becomes more skilled at snowboarding, it is often desired to be able to adjust the action of the binding such that the angle of the rider's leg with respect to the horizontal plane, is adjusted. Further, the rider may often wish to change the stance orientation with respect to the board, the stance width, the rotation of the rider's feet or the relative centering of the boot with respect to the board, such that different maneuvers are possible. For example, the rider may wish a differing amount of freedom for medial leans, i.e., inwardly toward the center of the rider's body, versus lateral leaning, i.e., away from the center of the rider's body. It is also desirable that the medial and lateral lean directions be substantially parallel to the longitudinal axis of the snowboard. Heretofore, such lean direction adjustment or lean tension with respect to the board has been fixed and would require replacement of the binding or adjustment of the highback to a different location along an adjustment slot to enable a different degree of freedom in any particular motion or direction. Similarly, the amount of lean has been somewhat fixed as well as the amount of force applied to pull the board upwardly when the rider leans.
Other binding types also result in a rigid boot, for example as shown by Raines et al, U.S. Pat. No. 4,973,073. Raines et al employ an elongate binding ridge which extends along the central portion of the boot, laterally away from the sole of the boot. The ridge is engaged by a corresponding receiving member on the snowboard. However, the elongate nature of the binding ridge adds stiffness to the boot, making walking with the boot while not attached to the snowboard uncomfortable or unnatural feeling.
Further, heretofore, boot highbacks have been fixed in relation to the boot, so it was not possible for a rider to change the pivot angle of the highback relative to the boot, without completely switching to another boot.
SUMMARY OF THE INVENTION
In accordance with the invention, a step-in three point binding is provided that includes first and second binding pin engagers on a first side of the binding and a third binding pin engager on a second side of the binding. At least one of the binding pin engagers moves from an unlocked to a locked position when the snowboarder steps onto the binding with a boot, securing the boot to the binding.
Accordingly, it is an object of the present invention to provide an improved three point binding system with improved side to side and front to back stability.
It is a further object of the present invention to provide an improved step-in binding for a snowboard.
Another object of the present invention is to provide an improved snowboard boot with adjustable forward lean.
It is yet another object of the present invention to provide an improved binding that is easily adaptable for receiving a left or a right foot at a given binding location.
The subject matter of the present invention is particularly pointed out and distinctly claimed in the concluding portion of this specification. However, both the organization and method of operation, together with further advantages and objects thereof, may best be understood by reference to the following description taken in connection with accompanying drawings wherein like reference characters refer to like elements.
REFERENCES:
patent: D. 325663 (1992-04-01), Barret et al.
patent: D. 327360 (1992-06-01), Graham
patent: D. 382320 (1997-08-01), Sand
patent: 1312739 (1919-08-01), LeBlanc
patent: 1546551 (1925-07-01), Petri
patent: 2693967 (1954-11-01), Jones, Jr.
patent: 3061325 (1962-10-0
Morrow Neil E.
Morrow Robert J.
Christensen O'Connor Johnson & Kindness PLLC
K-2 Corporation
Mai Lanna
Restifo Jeff
LandOfFree
Step-in snowboard binding and boot therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Step-in snowboard binding and boot therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Step-in snowboard binding and boot therefor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2603470