Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Including valve
Reexamination Certificate
2002-04-26
2004-01-13
McDermott, Corrine (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Arterial prosthesis
Including valve
C623S001350
Reexamination Certificate
active
06676699
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to tubular prostheses such as grafts and endoluminal prostheses including, for example, stent-grafts and aneurysm exclusion devices, and methods for placement of such grafts and endoluminal structures. Further, the present invention relates to a stent graft and deployment method.
BACKGROUND OF THE INVENTION
A wide range of medical treatments have been previously developed using “endoluminal prostheses,” which terms are herein intended to mean medical devices which are adapted for temporary or permanent implantation within a body lumen, including both naturally occurring or artificially made lumens. Examples of lumens in which endoluminal prostheses may be implanted include, without limitation: arteries such as those located within coronary, mesentery, peripheral, or cerebral vasculature; veins; gastrointestinal tract; biliary tract; urethra; trachea; hepatic shunts; and fallopian tubes. Various types of endoluminal prostheses have also been developed, each providing a uniquely beneficial structure to modify the mechanics of the targeted luminal wall.
A number of vascular devices have been developed for replacing, supplementing or excluding portions of blood vessels. These vascular grafts may include but are not limited to endoluminal vascular prostheses and stent grafts, for example, aneurysm exclusion devices such as abdominal aortic aneurysm (“AAA”) devices that are used to exclude aneurysms and provide a prosthetic lumen for the flow of blood.
One very significant use for endoluminal or vascular prostheses is in treating aneurysms. Vascular aneurysms are the result of abnormal dilation of a blood vessel, usually resulting from disease or a genetic predisposition, which can weaken the arterial wall and allow it to expand. While aneurysms can occur in any blood vessel, most occur in the aorta and peripheral arteries, with the majority of aneurysms occurring in the abdominal aorta. Typically an abdominal aneurysm will begin below the renal arteries and may extend into one or both of the iliac arteries.
Aneurysms, especially abdominal aortic aneurysms, have been treated in open surgery procedures where the diseased vessel segment is bypassed and repaired with an artificial vascular graft. While considered to be an effective surgical technique in view of the alternative of a fatal ruptured abdominal aortic aneurysm, the open surgical technique suffers from a number of disadvantages. The surgical procedure is complex and requires long hospital stays due to serious complications and long recovery times and has high mortality rates. In order to reduce the mortality rates, complications and duration of hospital stays, less invasive devices and techniques have been developed. The improved devices include tubular prostheses that provide a lumen or lumens for blood flow while excluding blood flow to the aneurysm site. They are introduced into the blood vessel using a catheter in a less or minimally invasive technique. Although frequently referred to as stent-grafts, these devices differ from covered stents in that they are not used to mechanically prop open natural blood vessels. Rather, they are used to secure an artificial lumen in a sealing engagement with the vessel wall without further opening the natural blood vessel that is already abnormally dilated.
Typically these endoluminal prostheses or stent grafts are constructed of graft materials such as woven polymer materials (e.g., Dacron,) or polytetrafluoroethylene (“PTFE”) and a support structure. The stent-grafts typically have graft material secured onto the inner diameter or outer diameter of a support structure that supports the graft material and/or holds it in place against a luminal wall. The prostheses are typically secured to a vessel wall above and below the aneurysm site with at least one attached expandable annular spring member that provides sufficient radial force so that the prosthesis engages the inner lumen wall of the body lumen to seal the prosthetic lumen from the aneurysm
Abdominal Aortic Aneurysms are frequently treated with bifurcated devices that provide an artificial lumen for flow of blood past the aneurysm and into the iliac vessels that branch off from the aorta. One such commonly used device comprises a bifurcated device having one branch portion longer than the other branch portion. This enables deployment of the main body through one of the iliac arteries where the longer branch is deployed. An extension leg is then deployed through the second iliac artery and is connected with the shorter branch portion.
Iliac vessels associated with abdominal aneurysms frequently have tortuous and twisted anatomies and other structural abnormalities that can prevent effect introduction of an extension leg through an iliac vessel. Often it must be decided prior to deployment whether to use a single lumen prosthesis through one iliac vessel and join the vessels with a shunt further down in the anatomy, or to use a bifurcated prosthesis with an extension. Often a surgeon may not be able to determine the appropriate course of action until the prosthesis is in place or after attempts have been made to deploy an extension graft through a tortuous iliac artery. It would be desirable to provide a device that would enable the decision to be made during the deployment procedure. Devices have been proposed in U.S. Pat. No. 6,102,938, incorporated herein by reference, that provide for sealing off a bifurcated portion of a bifurcated AAA device before or after deployment. Such device is designed for situations where a determination is made during a procedure that it would not be possible to introduce an extension leg into the shorter bifurcated portion to provide blood flow through one of the iliac vessels. It would be desirable to provide an improved or alternative device for accomplishing such task.
Frequently, the AAA procedures are performed in emergency situations where the aorta has ruptured or is extremely fragile and about to rupture. In these situations, frequently a single leg device is deployed through the aorta and one of the iliac vessels occluding the second iliac vessel. This may be done because of the importance of reestablishing blood flow through the aorta and iliac vessel and stopping the loss of blood through the ruptured or rupturing vessel. Such situations may not permit deployment of the second (extension) leg. During this crucial time, in using an existing bifurcated device, blood would be able to flow through the shorter bifurcated portion of the prosthesis into the area of the aneurysm. Accordingly it would be desirable to provide an improved or alternative device that allows for deployment of a bifurcated device in emergency situations that would prevent further blood flow into the area of the aneurysm.
SUMMARY OF THE INVENTION
Accordingly one embodiment according to the present invention provides a novel device and method that include providing a bifurcated device with one leg initially in an occluded position preventing flow of blood through that portion into the aorta. Once the implant is in place and blood is excluded from the aneurysm site, an extension may be introduced and the occluded side opened to blood flow through the extension.
An embodiment of the endoluminal prosthesis comprises a bifurcated tubular member constructed of a graft material and at least one annular support member. The tubular graft is formed of a woven fiber for conducting fluid. The tubular member includes, a proximal opening and distal openings though the bifurcated portions providing a lumen or lumens through which body fluids may flow. When deployed, annular support members support the tubular graft and/or maintain the lumen in a conformed, sealing arrangement with the inner wall of a body lumen. One of the bifurcated portions is provided with a valve that can open or close to permit or prevent the flow of blood through the bifurcated portion. Various embodiments of the valve includes a member that move a section of graft or other material over or away from the ope
McDermott Corrine
Medtronic Ave, Inc
Sweet Thomas J
LandOfFree
Stent graft with integrated valve device and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Stent graft with integrated valve device and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stent graft with integrated valve device and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3267607