Stent delivery device

Surgery – Instruments – Means for inserting or removing conduit within body

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06527779

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to catheter-based systems for treating a remote location within a patient, and more particularly to handles for stent delivery systems, electrophysiology devices and the like, which include a catheter and a retractable sheath thereon.
BACKGROUND OF THE INVENTION
Devices having a retractable sheath associated with a catheter are used to treat a variety of conditions using endoluminal methods instead of open surgical procedures. For example, angioplasty and stent implantation procedures are often used to treat atherosclerotic disease or other occlusive conditions in blood vessels, such as the coronary and carotid arteries. During angioplasty, for example, a catheter having an uninflated balloon on its distal end is percutaneously introduced into a patient's vasculature and advanced to a target treatment location, such as a stenosis within a blood vessel. Once the balloon is properly placed across the stenosis, the balloon is inflated to enlarge the lumen at the location. The balloon is then deflated, the inflation/deflation procedure may be repeated, and then the catheter is then withdrawn from the patient's body.
Often in conjunction with angioplasty, a stent or other tubular prosthesis may be implanted within a stenosis to scaffold the location and prevent it from contracting or otherwise becoming obstructed again. The stent, in a contracted condition, is generally placed upon a catheter, possibly over a balloon. The catheter is advanced to the target stenosis until the stent is adjacent to the location, and then the stent is deployed and substantially anchored at the location. The stent may be biased to expand to an enlarged condition and/or may be expanded with the aid of a balloon, as with plastically deformable stents, until the stent substantially engages the wall of the vessel. Once the stent is implanted, the delivery catheter is withdrawn from the patient.
Similarly for ablation procedures and the like, a catheter including an array of electrodes, for example, on an expandable basket assembly, may be provided. The device may be introduced into a body lumen, for example through the patient's vasculature into the heart, to treat conditions, such as heart arrhythmia.
With any of these systems, a sheath may be provided over the distal end of the catheter to protect the components on the distal end, such as a balloon, a stent, an array of electrodes, and the like. The sheath may be advanced distally over the proximal end of the catheter until it covers the distal end and its components, or, alternatively, the distal end of the catheter may be introduced into the sheath, and advanced until it is proximate the distal end of the sheath. Once the distal end of the catheter is properly positioned at a desired location within a body lumen, the sheath may be retracted to expose the distal end of the catheter. After treatment, the sheath may be advanced back over the distal end of the catheter, and the entire device withdrawn from the patient.
To cause the sheath to retract, the proximal end of the sheath outside the patient may simply be pulled while holding the catheter in a fixed position. This, however, may not provide very precise control of the retraction of the sheath. To provide improved control, handle devices have been proposed that include a wheel and screw mechanism. A wheel extending around the circumference of the handle is coupled to a screw mechanism engaging the sheath and the catheter. As the wheel is rotated about the longitudinal axis of the handle, the screw mechanism directs the sheath axially with respect to the catheter.
With such devices, however, it may be difficult to remember which direction, i.e., clockwise or counterclockwise, is appropriate either to retract or advance the sheath with respect to the catheter. This may be particularly important when immediate action is necessary because of a complication during a procedure. Moreover, in such devices, it is possible to advance the sheath in the distal direction during and after deployment of the device, such as a stent, on the distal end of the catheter. This distal movement may result in the improper placement and unwanted movement of the deployed device. This distal movement of the sheath is particularly problematic in the deployment of stents or other tubular prostheses. It is preferred that a catheter-sheath system have only unidirectional motion, i.e., only permit retraction of the sheath in the proximal direction.
Another disadvantage in current screw-type devices is that the devices are often complicated, including many parts which may be difficult to assemble and/or expensive to make.
Accordingly, there is a need for more intuitive, more simple, and/or less expensive devices for controlling catheter-sheath systems.
SUMMARY OF THE INVENTION
In a first aspect of the invention, a unidirectional handle device for an endoluminal device includes an outer tubular member and an elongate inner member slidably received in the outer tubular member. The elongate inner member is detachably mounted to the unidirectional handle device. The unidirectional handle device includes a handle member, a needle bearing clutch disposed in the handle member, a control member guide in the handle member, and a shaft. The shaft is disposed in the handle member and rotatable in a single direction. The shaft engages with the needle bearing clutch and is in rotational engagement with the outer tubular member. The outer tubular member is slidable from a distal position to a proximal position when the shaft is rotated in the single direction.
In another aspect of the invention, the unidirectional handle includes a handle member, a needle bearing clutch disposed in the handle member, a control member slidably disposed in the handle member, and a shaft. The control member is mounted at one end thereof to the outer tubular member. The shaft is mounted to the handle member and rotatable in a single direction by engaging with the needle bearing clutch. The shaft further includes a gear mounted thereon, wherein the gear is engaged with the control member. The control member is slidable from a distal position to a proximal position and not slidable from a proximal position to a distal position.
In still another aspect of the invention, the unidirectional handle device includes a handle member including a grip portion and a body portion. The body portion includes a transverse bore and a control member guide therein. A needle bearing clutch is disposed in a clutch recess located in the body portion, the needle bearing clutch and the clutch recess are coaxial with the transverse bore. A control member is slidably moveable within the control member guide of the body portion with the control member engaged at one end with the outer tubular member. The handle device includes a control knob including a shaft and gear thereon. The shaft engages with the needle bearing clutch while the gear engages with the control member. The control member is slidable from a distal position to a proximal position.
In still another aspect of the invention, the handle device includes a handle member, a needle bearing clutch disposed in the handle member, and a control member slidably disposed in the handle member. The control member is mounted at one end thereof to a hydrostatic valve assembly. A control-knob is mounted to the handle member and rotatable in a single direction, the control knob including a shaft engaging with the needle bearing clutch. The shaft further includes a gear engaged with the control member, the control member being slidable from a distal position to a proximal position and not slidable from a proximal position to a distal position.
In yet another aspect of the invention, a unidirectional handle device for an endoluminal device includes an outer tubular member and an elongate inner member slidably received in the outer tubular member. The unidirectional handle includes a handle member including a grip portion and a body portion, the body portion including a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Stent delivery device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Stent delivery device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stent delivery device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3005019

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.