Stent delivery catheter with bumpers for improved retention...

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent combined with surgical delivery system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06468299

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to the field of stent delivery systems generally, and more particularly to features for improving stent security on balloon dilatation catheters for use in percutaneous transluminal angioplasty (“PTA”) and percutaneous transluminal coronary angioplasty (“PTCA”).
In a typical PTCA procedure a guiding catheter having a preformed distal tip is percutaneously introduced through the femoral artery into the cardiovascular system of a patient in a conventional Seldinger technique and advanced within the cardiovascular system until the distal tip of the guiding catheter is seated in the ostium of the desired coronary artery. A guidewire is positioned within an inner lumen of a dilatation catheter and then both are advanced through the guiding catheter to its distal end. The guidewire is first advanced out of the distal end of the guiding catheter into the patient's coronary vasculature until the distal end of the guidewire crosses an arterial lesion. Subsequently, the dilatation catheter having an inflatable balloon on its distal portion is advanced into the patient's coronary anatomy over the previously advanced guidewire until the dilation as balloon is properly positioned across the lesion. Once properly positioned the balloon is inflated, with radiopaque liquid at high pressure (about 4-6 atmospheres), to expand the arterial passageway.
In a certain percentage of cases, a dilated arterial wall will collapse upon deflation of the dilation balloon or will slowly narrow over a period of time. To solve this problem, after the initial expansion of the artery, the dilatation catheter is removed and a second dilatation catheter equipped with a stent mounted on the dilation balloon is advanced through the guiding catheter and positioned across the arterial lesion. Once in position the balloon is inflated, expanding the stent and implanting it in the arterial wall. The expanded stent is left in place and supports the interior wall of the artery and thereby prevents arterial collapse or narrowing of the artery over time.
Generally, stents are small tubular metallic structures designed for intravascular placement within an artery. A typical stent-delivery system for balloon expandable stents is characterized by a catheter equipped with a dilation balloon and a stent mounted on the balloon. In such a system, the stent is slipped over a folded catheter balloon and crimped in place. A stent crimped onto a catheter balloon is dependant on friction to hold the stent in position and is therefore subject to slippage while being advanced through the patient's vasculature. Occasionally, during advancement, a stent will slide off of a catheter balloon and migrate within patient's vasculature necessitating emergency removal procedures. This condition most often occurs in small or heavily occluded arteries where contact with either the arterial wall or the lesion to be treated forces the stent off of the catheter balloon. Additionally, sometimes the stent cannot be deployed for a variety of reasons. In these instances, the stent must be able to be pulled back into the guiding catheter without being “stripped off” of the stent-delivery catheter.
What is needed therefore is a catheter with features that provide for improved stent retention. Such stent retention features should serve to prevent contact between a stent and an arterial wall or lesion and should retain the stent on the catheter balloon if such contact does occur. The present invention satisfies these and other needs.
SUMMARY OF THE INVENTION
The present invention provides an improved balloon catheter for delivery of stents which includes provisions for stent bumpers. The bumpers are located adjacent to the proximal and distal ends of the catheter balloon and form a pocket within which a stent crimped onto the folded balloon is mounted. The bumpers have sufficient height such that the crimped stent does not protrude above the bumpers. Therefore, the stent will remain securely mounted in the pocket formed between the bumpers and cannot slide off the catheter balloon should the stent inadvertently contact the walls of an artery. Additionally, since the crimped stent is recessed within the pocket formed by the bumpers, the likelihood of undesired contact between the stent and an arterial wall or lesion is significantly reduced. In a preferred embodiment, the stent bumpers are formed from a soft pliable material, such as polyamide and polyurethane, in order to minimize the possibility of inflicting trauma upon the walls of the artery during deployment of the stent delivery catheter.
Other features and advantages of the present invention will become more apparent from the following detailed description of the invention, when taken in conjunction with the accompanying exemplary drawings.


REFERENCES:
patent: 5409495 (1995-04-01), Osborn
patent: 5810871 (1998-09-01), Tuckey et al.
patent: 6068634 (2000-05-01), Lorentzen Cornelius et al.
patent: 6106530 (2000-08-01), Harada
patent: 6168617 (2001-01-01), Blaeser et al.
patent: 6174316 (2001-01-01), Tuckey et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Stent delivery catheter with bumpers for improved retention... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Stent delivery catheter with bumpers for improved retention..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stent delivery catheter with bumpers for improved retention... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2998982

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.