Steam generator for superheated steam for incineration...

Furnaces – Combined – With boiler

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C110S343000, C110S346000, C110S314000, C110S322000, C110S323000, C110S324000, C122S460000

Reexamination Certificate

active

06269754

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the field of the thermal treatment of garbage, special garbage or clarification sludge. It relates to a steam generator for superheated steam for incineration plants with corrosive flue gases, essentially comprising a radiation section, with at least one combustion chamber, and a convection section, having at least one superheater and having plates arranged on the inside of at least one wall of the radiation section, a space being provided between the plates and the wall of the radiation section, and at least part of the superheater being arranged as a wall superheater in this space.
2. Discussion of Background
It is known in the prior art to use steam boilers for garbage incineration plants, natural circulation boilers, but also forced-circulation boilers or once-through boilers, being predominantly employed.
At the present time, the boilers used for garbage incineration plants in Central European countries are preferably those in which the gas flowing out of the combustion chamber flows via a first empty flue with downward flow into a second empty flue with upward flow and subsequently into a horizontal bunching flue (convection section). Garbage incineration boilers in which the gases, after they have flowed through the combustion chamber, flow directly into the horizontal convection flue, are also known. In addition to these horizontal closed-loop boilers, vertical steam generators for garbage incineration plants are also known, in which the convection section is arranged vertically and which are usually of the three-flue or four-flue type (K. J. Thermische Abfallbehandlung [Thermal Waste Treatment]. EF Verlag für Energie- und Umwelttechnik GmbH, 1994, pages 390-402).
In these known garbage incineration boilers, evaporators, final superheater, superheaters and economizer are accommodated in this order in the convection section. This arrangement applies particularly for the typical steam parameters of 40 bar, 400° C. For corrosion reasons, the superheater is exposed to relatively low gas temperatures (<650° C.) and therefore also has to be large.
A drawback of these boilers is that the final superheaters are corroded at wall temperatures of over 350° C., because the contaminants entrained by the off-gas become pasty on the tubes at high temperature and lead to encrustation and soiling. Although a higher steam temperature than 400° C. would be desirable in terms of electricity generation, the corrosion problem rules this out altogether.
In order to protect the combustion chamber walls of garbage incineration plants from corrosive gases, it is known to apply plates or ramming compounds, e.g. silicon carbide, with a good thermal conductivity to the walls of the combustion chamber. In some instances, these plates are also designed with a space between plates and tube wall. This space, which contains a noncorrosive gas atmosphere, prevents the wall tubes from being corroded by gases which may diffuse through the rammed coating.
Furthermore, coal-fired power plant boilers with wall superheaters made from corrosion-resistant steel are known, which on the one hand take up heat for the superheater at high temperatures, and on the other hand protect the gastight boiler wall, which is made from low-alloy steel, from excessively high temperatures (W. Stiefel, M. Caravetti: “Design and Engineering of the 300-MW Lignite Boiler Plants Sostanj 4 and Yuan Bao Shan”, Sulzer Technical Review (1978), part 2, pages 48-57).
The drawback of this design solution consists in the fact that high-alloy and therefore extremely expensive steel has to be used for the wall superheaters.
DR 496,575 has disclosed a lining for combustion chambers, in which the insides of the chamber walls, after firing, are covered with thin-walled, heat-permeable and thermally stable metal screens which are arranged at a distance from one another. In this way, the combustion chamber walls which are covered with heating surfaces are to be protected from excessively high temperatures. The heat which is taken up by the metal screens is dissipated by cold gases which flow past the back of the screens and are blown in by means of a fan.
In DE 458,032, a superheater, which is designed as a wall superheater, is heated by the radiant heat from the combustion chamber, a solid wall of refractory bricks being arranged between the superheater and combustion chamber. Additional air flows around the superheater, and the partition has large openings for the additional air to be discharged. The aim is to control the superheater temperature by cooling the superheater tubes. The intention is therefore not to protect against corrosion, and such protection functions indirectly only when the air is flowing.
SUMMARY OF THE INVENTION
Accordingly, one object of the invention is to avoid the abovementioned drawbacks of the prior art and to provide a novel steam generator for superheated steam for incineration plants with corrosive flue gases, in which it is possible to achieve a high superheater temperature without corrosion to the final superheater, so that the superheater can be made from inexpensive material. The superheater is to take up as much heat as possible per unit of superheating surface area. Moreover, it is intended for it to be possible to convert existing boilers relatively easily.
According to the invention, this is achieved with a steam generator by the fact that the space between the plates and the wall of the radiation section, in which the wall superheater is arranged, contains a noncorrosive gaseous atmosphere which is at a higher pressure than the pressure of the gases in the combustion chamber.
The advantages of the invention consist in the fact that a high superheater temperature can be set in the steam generator according to the invention, while corrosive influences are largely suppressed. The overall superheater area which is required is reduced. Since at least part of the superheater is exposed to the radiation, in addition the partial-load performance of the steam generator is improved. The higher pressure in the space in which the wall superheater is arranged, and the absence of openings in the plates, or else the presence of only small openings (<1% of the wall area), ensure that it is impossible for any gas from the combustion chamber to penetrate into the space with the noncorrosive atmosphere.
It is advantageous if the plates are made from a nonmetallic inorganic material and have ribs on the side facing toward the tubes of the superheater, which ribs at least partially surround the tubes of the superheater. In this way, the amount of heat which is transferred to the superheater tubes is advantageously increased.
It is advantageous if a gas, preferably air, which is preheated flows through the space to the minimum possible extent, since in this way corrosive gases which have diffused through the plates are flushed away. On the other hand, there is no undesirable cooling of the tubes.
It is particularly expedient if the wall of the radiation section is a tube-web-tube connection which is designed as an evaporator, since in this way the gas tightness is ensured without expansion problems.
Furthermore, it is advantageous if only the final superheater or only the hottest part of the final superheater is arranged as a wall superheater in the space with a noncorrosive atmosphere in the radiation section, since in these parts of the superheater, the high temperatures mean that the abovementioned corrosion problems would be widespread without counter-measures. As a result of the final superheater being positioned in the radiation section, for example the combustion chamber, the heating surface area in the convective flue is reduced, and therefore additional evaporator heating surface area is installed in the convective flue. This additional evaporator heating surface area which is to be installed is smaller than in the situation in which, as is also possible, the entire superheater is arranged as a wall superheater in the space w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Steam generator for superheated steam for incineration... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Steam generator for superheated steam for incineration..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Steam generator for superheated steam for incineration... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2467917

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.