Steam cabinet and method of manufacture

Baths – closets – sinks – and spittoons – Vapor or heat in bath

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C004S532000, C607S083000

Reexamination Certificate

active

06339854

ABSTRACT:

FIELD OF THE INVENTION
The current invention relates to personal steam cabinets or saunas and their method of manufacture, more particularly to the arrangement and multi-piece manufacture of the base and the means for recirculation or steam within the cabinet.
BACKGROUND OF THE INVENTION
A number of devices are known to provide a steam bath or sauna in a compact and personal form. Simply, a steam enclosure is provided in which a user resides. There is provided means for entry and means for generation of steam. One additional advantage of a personal steam cabinet is that the user's head projects outside of the top of the cabinet and enables breathing of fresh cool air.
Despite the appeal and therapeutic benefits of personal steam cabinets, the present designs have various shortcomings. Some of these shortcomings include the broad areas of: maintaining cabinet integrity under in the warm temperature regime; both structural and the environment; heat control; uniformity of heat application and user comfort support; and the need for replenishment of the water supply.
Regarding the structure, other rigid enclosure clamshell designs utilize side hinge placement. When open, the weight of the lid bearing of the hinge can damage the lid and cause the hinge structure to failure prematurely. Under the prolonged application of steam heat and if subsequently left in the open position, the lid relaxes and deforms under gravity into a more oblong shape. Further, or alternatively, the hinges pull free from the lid or base due to the mechanical advantage. Either of the shape change, or movement in the hinges result in an improperly fitting lip and base portion. When the cabinet changes its shape or the door shifts, the seal is jeopardized, causing steam and condensation to escape. The same problems occur to a lesser extent with models having a split lid and, while sagging is less of an issue, the extra peripheral area requires additional seals and steam and moisture leakage increases proportionately.
Further, the usual materials and method of manufacture utilize fiberglass resins or otherwise urea-based construction. Exposing these types of materials to prolonged steam exposure and temperature ultimately cause styrene or urea to be released, both of which are unpleasant; both due to its odor and when it comes in contact with the now open pores of the user.
Regarding the steam experience for the user, it is common to have a great disparity in temperature between the upper and lower regions of the cabinet. Additionally, when the steam condenses it tend to pool unpleasantly about the user's feet.
The supply of steam has been associated with various disadvantages including the need is some cases for plumbed supply, or in the case of portable units, small reservoirs and the need for constant refilling. In the fill-and-evaporate systems, as the steam boilers empties, the danger of scalding heightens as the steam becomes hotter.
The applicant's cabinet and steam supply avoid the above mentioned problems and provide a convenient and environmentally sound and pleasant steam cabinet.
SUMMARY OF THE INVENTION
In a preferred form of the invention, a personal steam cabinet, formed of non-volatile ABS plastic, is manufactured as an assemblage of three-pieces: a base tub, a liner tub and a lid. The liner tub is fitted with various operational and structural features and then is installed into the base tub. The lid is hinged at the foot of the base tub. The liner tub supports a partially reclining user, and when the lid is closed, the liner tub forms a steam enclosure about the user. The flexible ABS liner tub is reinforced with fiberglass, the reinforcing being located on the liner tub's underside so as to isolate it from the steam. Hot spots are avoided through fan-equipped, U-shaped recirculation conduits with inlet and outlets being located in the liner tub for access to the steam enclosure. A horn structure at the foot of the liner tub is connected via steam conduit to a steam inlet on the base tub. The horn is fitted with a plurality of steam outlets which are directed towards the lid so as to avoid direct contact of hot steam and the user and to use the lid to deflect the steam back into the enclosure.
In a preferred combination, the above steam cabinet is combined with a portable steam generator, connected by a steam conduit and a control line. The control line provides low voltage power to the onboard fans and for transmitting a temperature signal from a temperature probe in the cabinet.
Preferably, the portable steam generator is a gravity water feed system which slowly provides water under vacuum level control from a water reservoir to a boiler, the level control ensuring only a minimum volume of water which barely covers the electric heater. The minimum water volume heats very quickly and the level control ensures constant temperature of the generated steam.
Accordingly, in one broad aspect, a personal steam cabinet is provided comprising a base tub forming a cavity and having a first periphery, a liner tub forming a steam enclosure and having a generally W-shaped, body-contoured inside lounge portion, the lounge portion being fitted with one or more U-shaped steam conduits each having a outlet and an inlet communicating with the enclosure, the liner tub being insertable into the cavity in the base tub and having a second periphery which mates and seals to the first periphery when so inserted so as to form a base assembly having foot and a head; a fan or fans for inducing flow through each U-shaped steam conduit to recirculate steam in the enclosure; a steam supply conduit extending from the base tub to the lounge portion for conducting and discharging steam into the enclosure; and a closable lid having a third periphery which mates with the second periphery when the lid is closed and substantially sealing the enclosure, the lid having a foot and a head adjacent the foot and head of the base assembly respectively, the lid's head having a cutout for permitting passage of a user's head.
In another broad aspect of the invention, a method of manufacturing the personal steamer comprises the steps of: providing a base tub; providing a liner tub forming a steam enclosure having a body-supporting lounge topside and an underside; installing one or more steam enclosure recirculation conduits to the underside of the liner tub; installing a steam supply conduit between the liner tub and the base tub; fitting the liner tub into the base tub and sealing them together to form a base assembly having a foot, a head and an enclosure periphery; and installing a lid having a foot, a head and a periphery, the lid being hinged at the foot of the base assembly for operation between two positions, the lid periphery sealing to the base assembly's periphery in a first closed position and the lid permitting access to and from the steam enclosure in the second open position.
More preferably, the personal steamer further comprises a portable steam generator connected to the steam supply conduit, the generator having a boiler with a heater immersed in a shallow, level-controlled water supply, the level of the water supply being controlled using a gravity fed, vacuum-locked water reservoir and a fan for directing the steam to the steam supply conduit.
In a more particular aspect of the invention, the portable steam generator comprises a dish into which a neck of a water reservoir is immersed so as to form a vacuum-lock and gravity feed of water from the reservoir; a boiler having a bottom, side walls, a freeboard volume and an electrical immersion heater, the heater positioned adjacent the bottom and the side walls constricting the volume about the heater; a conduit between the dish and the boiler, the elevation of the dish being such that the minimum volume of water is maintained in the boiler to immerse the heater; and a fan for directing air through the freeboard of the boiler to conduct steam to a steam supply conduit.


REFERENCES:
patent: 1158382 (1915-10-01), Leslie
patent: 3290697 (196

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Steam cabinet and method of manufacture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Steam cabinet and method of manufacture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Steam cabinet and method of manufacture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2865073

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.