Stealthy keyboard

Computer graphics processing and selective visual display system – Display peripheral interface input device – Including keyboard

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S156000, C345S161000, C345S169000, C345S184000, C341S021000, C341S022000, C341S023000, C200S0050EA

Reexamination Certificate

active

06429854

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
REFERENCE TO A MICROFICHE APPENDIX
Not Applicable.
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to computer keyboards, specifically to improvements in one-hand, chording keyboards that are held by the operating hand.
2. Copyright Authorization
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent disclosure, as it appears in the U.S. Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
BACKGROUND
The need for a better, more portable computer keyboard is long-standing and growing more acute. It is widely expected that the current generation of laptop computers will be replaced in the future by so-called wearable computers which provide all the functionality of today's desktop units. Inherent in the concept of wearable computers is that they will be highly useable while the wearer is standing or even walking, much as is a cellular telephone.
The wearable computers currently available (e.g., those available from Xybernaut Corp., Fairfax, Va.) are obtrusive and are acceptable in only a very restricted range of social situations. However, if the components shrink sufficiently, wearable computers might in the future be more often thought of as unobtrusive personal effects like eyeglasses or a pocketknife and thus become more generally acceptable. Clearly, many new applications are enabled as the computer's components become less noticeable in use.
Data output devices suitable for use with wearable computers, i.e., devices usable by pedestrians in motion, are well known. They include non-immersive, head-mounted virtual displays (an example is described by The MicroOptical Corporation, Westwood, Massachusetts), light and sound alarms, tactile vibrators, etc. Non-immersive in this context means that the surrounding real world is not blocked out, typically because the virtual display subtends only a small fraction of the field of view or because it is semi-transparent or both.
However, the data input methods currently envisaged for wearable computers are problematic. Voice recognition technology can be used to navigate menus but remains computationally burdensome and unreliable for general text entry. More fundamentally, speaking the data aloud is often inappropriate, poses a security risk and can certainly be obtrusive. So-called pen computers and PDA's (Personal Digital Appliances) require use of both hands or a supporting table; the situation is similar regarding tiny QWERTY (i.e., conventionally layed out) keyboards designed for one-finger typing and chording keyboards designed for desk-top use.
Perhaps the best candidate devices for general text entry are one-handed chording keyboards that are designed to be held by the operating hand and thus do not require support by a table or lap. However, no keyboard described in the prior art simultaneously embodies all the characteristics necessary to enable practical, discrete entry of general text by pedestrians in motion, namely
(a) the keyboard must be supported and operated by only one hand;
(b) it must be discretely and rapidly stowed and retrieved, preferably to and from a pocket of the user's clothing and preferably using only the operating hand;
(c) it must support touch typing, i.e., it must not require observation in use;
(d) it must support typing speeds comparable to those commonly achieved on QWERTY boards;
(e) it must allow integration of a computer mouse or equivalent, such as a miniature trackball or joystick;
(f) it must be learned reasonably easily;
(g) it must be small and stealthy in use and while stowed, i.e., it should not be immediately evident to a casual observer;
(h) it must operate in the same way and more or less equally well regardless of the orientations of the wrist and arm, so that the user is free to adopt whatever posture is appropriate to his circumstance and,
(i) in use, it must leave the fingers near their relaxed positions, neither too curled nor too straight, so that the keyboard may be operated for long intervals without undue fatigue.
For example, Penner (U.S. Pat. No. 4,905,001) describes strapping a one-handed keyboard to the palm or building the switches into the joints of a glove-like device. A strap across the back of the hand is also used by the “Twiddler,” which is available from Handykey Corp. (Mt. Sinai, N.Y.). These designs do not have properties (b) and (g) above. The Twiddler also requires that the fingers curl tightly, pointing back at the palm, which violates (i) above.
Penner and others (e.g., Pollack in U.S. Pat. Nos. 5,361,083 and 5,473,346) describe also strapless configurations in which the keying fingers support the keyboard against gravity and retain it within the hand.
Surprisingly, trials and experimentation establish that it is very difficult to type with any speed when the keying fingers must also support the keyboard or assist in retaining it within the hand. The reason is that as the different chords are keyed the supporting forces and application points must be adjusted constantly to avoid pressing unwanted keys or dropping the unit. This requires much more skill than typing on a keyboard supported independently of the typing fingers (e.g., a conventional, table-supported, QWERTY board). In reality, keyboards supported by the keying fingers seriously violate (f) above. Less surprisingly, it also proves very desirable in practice to be able to flex, stretch and wiggle the typing fingers without dropping the keyboard.
Takahashi et al. (U.S. Pat. 5,745,056) describe a keyboard held by a single hand via the thumb and a “palm rest,” independently of the keying fingers, but still show the keying fingers moving back and forth over a flat keyboard. This motion and the searching it implies slow both ultimate typing speed and skill acquisition rate. The design is visible from all sides of the hand and is in no way stealthy. It also requires highly curved finger positions.
There is thus a heretofore-unmet need for a one-handed, strapless keyboard, with lowered observability, which is not supported by the keying fingers and which leaves the fingers always near their rest positions. Such a keyboard would have applications beyond wearable computers and could be used advantageously with existing computers and appliances that have embedded computers. It is often useful to have one hand free or not to necessarily sit at a table or with a QWERTY board balanced on one's lap.
Another limitation of the prior art is that it does not well address variation in finger dimensions between users. This variation is not important for conventional QWERTY boards because wrongly placed keys are compensated by moving the entire hand relative to the keyboard, stroke by stroke. Keyboards that are supported by the operating hand do not have this degree of freedom. The obvious solution is to manufacture such keyboards in a range of standard sizes, as is done for gloves, but this increases inventory and complicates logistics.
SUMMARY OF THE INVENTION
In accordance with the present invention, a one-handed, chording, computer keyboard comprises a frame held between the thumb and palm, with an attached array of keyswitches. The configuration is such that while the keyboard is in use the hand approximates a relaxed, empty position with the fingers slightly bent. The hand hides the keyboard from observers at viewpoints off the back (dorsal) side of the hand. The keyswitches are typically arrayed in pairs with actuating contact being via the flesh on the palm sides of the middle and distal phalanges. Importantly, the keying fingers do not support the keyboard.
In one embodiment the frame provides sufficient space for a miniature joystick, such as is available from InControl Solutions, Inc. (Portland, Oreg.), or other positioning

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Stealthy keyboard does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Stealthy keyboard, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stealthy keyboard will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2938032

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.