Stator for an electrical rotating machine

Electrical generator or motor structure – Dynamoelectric – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S256000, C310S064000, C310S216006, C310S049540

Reexamination Certificate

active

06657356

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to electrical rotating machines, and more particularly to the stator of an electrical machine in which the rotor is located inside the stator.
The stator has a magnetic circuit and windings of electrically conductive wires which in general are made from insulated copper wire, often round in section. The magnetic circuit, for its part, is always laminated; it is formed by a stack of magnetic metal sheets. Each metal sheet is cut to shape such that slots separated by teeth are made, the slots being the seatings for the electrically conductive wires. Each slot is delimited by two substantially radially oriented walls and a slot base, and has an opening, the opening being located on a smaller radius than the radius on which the slot base is located. This principle of arranging the stator is widely applied in synchronous or asynchronous machines.
Installing the electric windings in the slots involves inserting electrical conductors (or sections of electrical conductors) by passing them through the opening of the slot. Consider that, in the type of motor relevant here, this slot opening is oriented towards the inside and is thus hard to access. Moreover, the slot opening is in general quite narrow with respect to the width of the slot. In fact, to arrive at the optimum mechanical and magnetic construction, each tooth ends (on the side with the small radii) in a foot which partly closes the slot opening.
It is thus no simple matter to insert the electrical conductors in the slots by passing them through this rather cramped opening. This results in filling rates of the slots with the electrical conductors remaining relatively low, in particular if the electrical machine is long.
The dimensions of an electrical rotating machine depend on its rated load torque. The higher the rated load torque which a motor is able to produce, the more bulky the electrical motor, all other things being equal.
There are applications for which it is desirable to obtain both high power levels and highly compact constructions of the motor at the same time. To give just one concrete example, when the intention is to install electric traction motors in the wheels of automotive vehicles, it is desirable to be able to develop power levels of at least 10 kW per motor, and even at least 25 or 30 kW per motor for the majority of the time, for a weight as low as possible in order not to make the unsprung masses too heavy. It is also desirable for the bulk to be very small, not going beyond or going beyond by as little as possible the internal volume of the wheel so that it does not interfere with the elements of the vehicle in the event of flexing of the suspension and in the event of other types of movement of the wheel with respect to the vehicle body.
These two requirements (high power level and low weight and bulk) make it very problematic to install electric traction motors in the wheels of private vehicles without radically improving the ratio of weight to power of the electrical machines currently available on the market.
SUMMARY OF THE INVENTION
The object of the invention is to facilitate and optimize the construction of electric motors. This is most particularly important if the intention is to increase the specific power of an electrical rotating machine, that is to say the mechanical power that a motor is capable of developing for a given overall mass or the electrical power that an alternator is capable of delivering for a given overall mass.
The invention relates to electrical machines in which the stator magnetic circuit is made in two parts: an internal part comprising the teeth, and an external part covering the teeth and slots. In this magnetic circuit, each tooth separating two slots does not form a continuous piece with the outside periphery of the magnetic circuit. It goes without saying that the magnetic circuit is laminated and is made from ferromagnetic metal sheets for reasons well known to those skilled in the art. It is thus possible to form a core comprising the internal part of the magnetic circuit, on which the conductive wires can be wound in the slots, with access to these slots being from the outside. Then, the internal part is covered by the external part to complete the magnetic circuit.
In a first aspect, the invention proposes an electrical rotating machine comprising an external stator and a rotor having a geometrical axis of rotation and disposed inside the stator, the said stator comprising a laminated magnetic circuit having:
a stack of yokes each made from a magnetic metal sheet and disposed substantially parallel to a plane perpendicular to the axis, the stack forming an external covering;
a plurality of teeth disposed inside the covering, protruding towards the inside, the teeth each being made from a magnetic metal sheet and disposed substantially parallel to a plane perpendicular to the axis, the teeth being stacked and the stacks of teeth delimiting slots, the teeth being bound to the covering;
the slots being delimited on the radially outer side by the yokes, the slots being delimited in the circumferential direction by the side walls of the teeth, electrically conductive wires being disposed in the slots, and in which the covering is mounted such that it is bound to a sheath surrounding the covering on the outside thereof, a circuit intended for a cooling liquid being made in the said sheath.
One object of the invention is at the same time to improve dissipation to the outside of the heat generated by the motor. The invention proposes using a cooling circuit by means of ducting in which a liquid coolant circulates, which, despite the thermal resistance owing to the stator magnetic circuit in two parts, which allows better filling of the slots by the copper, enables the heating of the motor to be sufficiently limited and thus allows good efficiency and/or an increased specific power to be achieved.
To construct machines of very high power per unit mass, and/or to construct machines with very good efficiency, it is advantageous to fill the available section of the slot with copper to the maximum extent. With a given slot section, an increase in the section of copper brings about a decrease in Joule's loss for a given current (and thus torque). Moreover, there is less heating. The efficiency of the machine is thus improved. In accordance with a different approach, at a given maximum permissible temperature, the corresponding current is larger (and thus the torque is greater), which improves the ratio of weight to power of the machine.
Consider also that for a given section of copper the section of the slot can be reduced and thus the mass of the ferromagnetic circuit is reduced. In fact, all other things being equal, in particular the maximum permissible temperature within the machine, it is possible for example to reduce the height (dimension measured in the radial direction) of the slots. The mass of the ferromagnetic circuit has been reduced, the losses in the ferromagnetic circuit are thus decreased, and consequently the specific power of the machine and its efficiency are improved.
According to a second aspect, the invention proposes an electrical rotating machine comprising an external stator and a rotor having a geometrical axis of rotation and disposed inside the stator, the said stator comprising a laminated magnetic circuit having:
a stack of yokes each made from a magnetic metal sheet and disposed substantially parallel to a plane perpendicular to the axis, the stack forming an external covering;
a plurality of teeth disposed inside the covering, protruding towards the inside, the teeth each being made from a magnetic metal sheet and disposed substantially parallel to a plane perpendicular to the axis, the teeth being stacked and the stacks of teeth delimiting slots, the teeth being bound to the covering;
the slots being delimited on the radially outer side by the yokes, the slots being delimited in the circumferential direction by the side walls of the teeth, electrically conductive wires being

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Stator for an electrical rotating machine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Stator for an electrical rotating machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stator for an electrical rotating machine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3183470

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.