Static coil apparatus and method for welding thermoplastic...

Electric heating – Inductive heating – Metal working

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S603000, C219S633000, C219S634000, C219S645000, C219S672000

Reexamination Certificate

active

06323468

ABSTRACT:

TECHNICAL FIELD
The present invention relates to welding systems for welding thermoplastic composite structures, and more particularly to a static coil apparatus and method for induction welding thermoplastic structures.
BACKGROUND OF THE INVENTION
Background Art
1. Composite Manufacturing
Fiber-reinforced organic resin matrix composites have a high strength-to-weight ratio or a high stiffness-to-weight ratio and desirable fatigue characteristics that make them increasingly popular as a replacement for metal in aerospace applications where weight, strength, or fatigue is critical. Organic resin composites, be they thermoplastics or thermosets, are expensive today. Improved manufacturing processes would reduce touch labor and forming time.
Prepregs combine continuous, woven, or chopped reinforcing fibers with an uncured, matrix resin, and usually comprise fiber sheets with a thin film of the matrix. Sheets of prepreg generally are placed (laid-up) by hand or with fiber placement machines directly upon a tool or die having a forming surface contoured to the desired shape of the completed part or are laid-up in a flat sheet which is then draped and formed over the tool or die to the contour of the tool. Then the resin in the prepreg lay up is consolidated (i.e. pressed to remove any air, gas, or vapor) and cured (i.e., chemically converted to its final form usually through chain-extension) in a vacuum bag process in an autoclave (i.e., a pressure oven) to complete the part.
The tools or dies for composite processing typically are formed to close dimensional tolerances. They are massive, must be heated along with the workpiece, and must be cooled prior to removing the completed part. The delay caused to heat and to cool the mass of the tools adds substantially to the overall time necessary to fabricate each part. These delays are especially significant when the manufacturing run is low rate where the dies need to be changed frequently, often after producing only a few parts of each kind. An autoclave has similar limitations; it is a batch operation.
In hot press forming, the prepreg is laid-up to create a preform, which is bagged (if necessary), and placed between matched metal tools that include forming surfaces to define the internal, external, or both mold lines of the completed part. The tools and composite preform are placed within a press and then the tools, press, and preform are heated.
The tooling in autoclave or hot press fabrication is a significant heat sink that consumes substantial energy. Furthermore, the tooling takes significant time to heat the composite material to its consolidation temperature and, after curing the composite, to cool to a temperature at which it is safe to remove the finished composite part.
As described in U.S. Pat. No. 4,657,717, a flat composite prepreg panel was sandwiched between two metal sheets made from a superplastically formable alloy and then formed against a die having a surface precisely contoured to the final shape of the part.
Attempts have been made to reduce composite fabrication times by actively cooling the tools after forming the composite part. These attempts have shortened the time necessary to produce a composite part, but the cycle time for and cost of heating and cooling remain significant contributors to overall fabrication costs. Designing and making tools to permit their active cooling increases their cost.
Boeing described a process for organic matrix forming and consolidation using induction heating in U.S. Pat. No. 5,530,227. There, prepregs were laid up in a flat sheet and were sandwiched between aluminum susceptor facesheets. The facesheets were susceptible to heating by induction and formed a retort to enclose the prepreg preform. To ensure an inert atmosphere around the composite during curing and to permit withdrawing volatiles and outgassing from around the composite during the consolidation, the facesheets were welded around their periphery. However, such welding unduly impacts the preparation time and the cost for part fabrication. It also ruined the facesheets (i.e., prohibited their reuse which added a significant cost penalty to each part fabricated with this approach). Boeing also described in U.S. Pat. No. 5,599,472 a technique that readily and reliably seals facesheets of the retort without the need for welding and permits reuse of the facesheets in certain circumstances. This “bag-and-seal” technique applies to both resin composite and metal processing.
2. Processing in an Induction Press
The dies or tooling for induction processing are ceramic because a ceramic is not susceptible to induction heating and, preferably, is a thermal insulator (i.e., a relatively poor conductor of heat). Cast ceramic tooling is strengthened and reinforced internally, with fiberglass rods or other appropriate reinforcements and externally with metal or other durable strongbacks to permit it to withstand the temperatures and pressures necessary to form, to consolidate, or otherwise to process the composite materials or metals. Cast ceramic tools cost less to fabricate than metal tools of comparable size and have less thermal mass than metal tooling, because they are unaffected by the induction field. Because the ceramic tooling is not susceptible to induction heating, it is possible to embed induction heating elements in the ceramic tooling and to heat the composite or metal retort without significantly heating the tools. The induction heating elements themselves connect to form a water cooling network. Thus, induction heating can reduce the time required and energy consumed to fabricate a part.
While graphite or boron fibers can be heated directly by induction, most organic matrix composites require a susceptor in or adjacent to the composite material preform to achieve the necessary heating for consolidation or forming. The susceptor is heated inductively and transfers its heat principally through conduction to the preform or workpiece that, in Boeing's prior work, is sealed within the susceptor retort. Enclosed in the metal retort, the workpiece does not experience the oscillating magnetic field which instead is absorbed in the retort sheets. Heating is by conduction from the retort to the workpiece.
Induction focuses heating on the retort (and workpiece) and eliminates wasteful, inefficient heat sinks. Because the ceramic tools in Boeing's induction heating workcell do not heat to as high a temperature as the metal tooling of conventional, prior art presses, problems caused by different coefficients of thermal expansion between the tools and the workpiece are reduced. Furthermore, this process is energy efficient because significantly higher percentages of the input energy go to heating the workpiece than occurs with conventional presses. The reduced thermal mass and ability to focus the heating energy permits the operating temperature to be changed rapidly which improves the products produced by Boeing's workcell. Finally, the shop environment is not heated as significantly from the radiation of the large thermal mass of a conventional press, and is a safer and more pleasant environment for the press operators.
In induction heating for consolidating and/or forming organic matrix composite materials, Boeing has placed a thermoplastic organic matrix composite preform of PEEK or ULTEM, for example, within a metal susceptor envelope (i.e., retort). These thermoplastics have a low concentration of residual volatile solvents and are easy to use. The susceptor facesheets of the retort are inductively heated to heat the preform. A consolidation and forming pressure is applied to consolidate and, if applicable, to form the preform at its curing temperature. The sealed susceptor sheets form a pressure zone. The pressure zone is evacuated in the retort in a manner analogous to conventional vacuum bag processes for resin consolidation or, for low volatiles resins, like ULTEM, this zone can be pressurized to enhance consolidation. The retort is placed in an induction heating press on the forming surfaces of dies

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Static coil apparatus and method for welding thermoplastic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Static coil apparatus and method for welding thermoplastic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Static coil apparatus and method for welding thermoplastic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2589991

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.