Data processing: artificial intelligence – Knowledge processing system – Knowledge representation and reasoning technique
Reexamination Certificate
1999-11-09
2004-07-20
Starks, Jr., Wilbert L. (Department: 2123)
Data processing: artificial intelligence
Knowledge processing system
Knowledge representation and reasoning technique
C703S015000, C703S027000, C703S017000, C703S020000, C434S224000
Reexamination Certificate
active
06766311
ABSTRACT:
BACKGROUND
1. Technical Field of the Invention
The present invention relates generally to electronic tutoring systems and methods, and more particularly, to an interactive computer-based training (ICBT) system and method operable over an Internet Protocol (IP)-based public computer network such as the Internet, a corporate Intranet, and the like.
2. Description of Related Art
Maintaining a skilled and innovative work force has always been important for businesses that strive to attain a competitive edge in the marketplace. Companies and organizations have come to recognize the value of intelligent and energetic people whose chief asset is their ability and desire to learn. The training opportunities presented in today's information age have increased with the advent of new technologies, creating an even broader range of tutoring services available to consumers.
The need for well-trained individuals is even more acute in technology-based businesses such as, for example, the telecommunications industry. Service providers in this industry operate and maintain vast telecommunications networks covering huge geographic areas. These networks, formed by interconnecting an immense array of diverse and often highly complex pieces of equipment, pose enormous challenges to field technicians whose responsibilities typically include installation, repair and maintenance of network equipment at network facilities and remote customer sites, and troubleshooting service calls night and day, seven-days-a-week. The service calls often involve routine as well as urgent trouble calls to make repairs that will enable the equipment, often purchased from third-party vendors, to continue functioning for the customer. Clearly, providing proper training to such field technical personnel and other technical
on-technical personnel on a broad assortment of network equipment is highly critical in order to be able to reduce the downtime associated with failed or poorly functioning equipment.
One of the conventional methods to impart appropriate technological information on an “as needed” basis to field technicians is to provide a centralized technical staff to answer questions the technicians may have concerning specific network equipment. This solution is costly. Support personnel may have to answer the same question for a number of field technicians. In addition, support personnel typically cannot provide systematic training that is needed, but rather provide “fire-fighting” type training to get a technician through a particular problem. This will not provide the technician a comprehensive understanding of the network equipment he or she is required to handle.
Another conventional method of providing instruction is by way of classroom training at a centralized location. However, this method is also highly disadvantageous. Such training is limited in classroom size and often very expensive in terms of field technicians' time and the actual monetary cost involved. Further, this problem is compounded by the fact that frequent equipment updates require continual re-training of the technicians in order for them to stay current and/or competent.
Another limitation of classroom training is that because of the disparity in proficiency levels of various technicians, training classes do not provide an appropriate level of training for every technician. Since such classes cannot be tailored to every individual's proficiency level, each technician may receive the entire training course involving complex subject matter. As a result, many technicians may feel overwhelmed while some may receive training they do not need.
Computer-based training (CBT) methods alleviate some of the deficiencies of the conventional solutions set forth hereinabove. However, the existing CBT solutions are not without drawbacks of their own. First, although courseware designed for CBT sessions is typically provided to be self-paced, flexibility in selecting different lessons or re-arranging the order of lessons plans is rather limited. For example, because the courseware is typically built around a pre-arranged set of lessons, the user cannot go from one lesson to another without first completing a previously-required lesson plan. Accordingly, such lack of flexibility renders the current CBT schemes a poor choice for effectively presenting “real-world” training with a self-paced multi-path flow. Furthermore, these solutions do not provide a scheme for evaluating the amount of training each individual end-user (e.g., a technician) needs in order to bring the individual up to a predetermined level of proficiency.
In addition, the existing CBT solutions are not optimized for providing adequate levels of instruction on complicated equipment having tightly integrated hardware and software modules and sub-modules. Those of ordinary skill in the art should readily appreciate that lack of appropriate behavioral models of the equipment with sufficient degree of realistic complexity renders the resultant CBT sessions rather insufficient for providing high quality training.
SUMMARY
Accordingly, the present invention provides an interactive computer-based training (ICBT) system operable over a computer network for training users that advantageously overcomes these and other deficiencies and shortcomings of the prior art set forth hereinabove. The ICBT system is provided with inter-dependent, state-machine-based hardware and software simulators for emulating hardware and software functionality associated with a piece of equipment on which the users are to receive interactive training. The state transition method includes the steps of: identifying a current state of the state machine wherein a transition is to be effectuated; determining if there is a state immediately prior to the current state, and if so, determining whether there is a dependency of the current state on the immediately prior state, the dependency being characterized as a first order dependency; inferring a reference value associated with the current state based on the first order dependency; and determining a future state of the state machine based on the inferred reference value.
In further detail, the ICBT system comprises a hardware simulator based on a state machine engine for emulating one or more hardware states associated with the equipment. Also included is a software simulator that is inter-dependent on the hardware simulator for accurately emulating the software functionality of the equipment. The software simulator is provided as a command inference engine that allows the users to interactively interrogate the emulated equipment for its software functionality commands. One or more independently selectable learning modules, each including one or more lesson plans related to the hardware and software functionality of the emulated piece of equipment, are also included. The learning modules are provided to be inter-dependently associated with the hardware and software simulators of the equipment. A user interface is included for selecting one or more learning modules in addition to effectuating inputs from the users to change the hardware and software configurations and simulators of the equipment.
In another aspect, the present disclosure provides an interactive CBT method for training users on equipment having hardware and software functionality. The method provides for simulating the hardware and software functionality of the equipment by employing inter-dependent state machines wherein state transitions are based on tracking prior dependencies and drawing inferences therefrom. One or more independently selectable learning modules are provided in the method, wherein each module includes lesson plans related to the hardware and software functionalities of the equipment. Inputs are provided by the users to effectuate different hardware and software configurations of the equipment. Thereafter, configuration-dependent learning modules may be selected based on the different hardware and software configurations.
REFERENCES:
patent: 4316720 (1982-02-01), Ackerman
paten
Closson Jackie R.
Doggett Patrick J.
Wall Robert S.
Warner Donald R.
Phan Thai
Starks, Jr. Wilbert L.
WorldCom, Inc.
LandOfFree
State transition system and method in interactive... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with State transition system and method in interactive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and State transition system and method in interactive... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3207830