State apparatus, and associated methods, for controlling...

Multiplex communications – Communication over free space – Combining or distributing information via time channels

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S252000, C455S522000

Reexamination Certificate

active

06473419

ABSTRACT:

The present invention relates generally to the allocation of resources in a communication system in which packet data is communicated between a sending station and a receiving station. More particularly, the present invention relates to apparatus, and an associated method, for allocating communication channels for packet data communications with a mobile station in a multi-user, radio communication system, such as a cellular communication system which provides for packet data communications.
A QoS (quality of service) parameter is associated with a packet service-type, such as a packet-voice communications service or a packet-video communications service. The QoS parameter defines allowable access-delay times for access to communication channels to communicate packet data pursuant to the communications service thereon. State machine apparatus is used to assign operational states pursuant to which a data service is to be operated. The operational states or substate, in which the data service is caused to be operated is dependent upon the QoS parameter of the service. The amount of system resources allocated to the data service pursuant to the operational state in which a mobile station used to effectuate the data service is operated is dependent upon the QoS parameter. If the QoS parameter is of at least a selected value, the mobile station is operated in a state in which a channel remains allocated to the mobile station for packet data communications even subsequent to a period of communication inactivity by the mobile station. By continuing to allocate the channel to the mobile station, little or no access delay times occur when additional packet data is to be communicated.
In one implementation, an embodiment of the present invention is utilized in a CDMA (code-division, multiple-access) mobile communication system, such as that constructed pursuant to the IS-95 interim standard promulgated by the EIA/TIA. Packet data users are managed by way of a network control architecture having multiple states. State transitions are dependent upon the QoS parameter of the packet service-type of the communications to be effectuated. The value of the QoS parameter is determinative to which state a state transition is made. And, the state in which the mobile station, used to effectuate the data service, is operated is determinative of the level of resources allocated to the mobile station and, correspondingly, the access delay times within which a channel is made available for the communication of packet data thereon.
BACKGROUND OF THE INVENTION
Advancements in digital telephony techniques have permitted the development, implementation, and widespread usage of multi-user, digital communication systems. Use of digital techniques is advantageous, inter alia, as the communication capacity of a digital communication system is typically greater than the capacity of a corresponding analog system. Error correction of signals transmitted during operation of such a system can also be improved.
A cellular communication system is exemplary of a communication system which has been made possible as a result of such advancements. A cellular communication system permits communications to be effectuated with a mobile station by way of a radio channel, thereby obviating the need for a wire line connection to form a communication channel between a sending and a receiving station. Through use of a cellular communication system, communications are possible at locations at which the use of fixed or hard-wired connections would be inconvenient or impractical, such as in a motor vehicle. Cellular communication systems have been implemented using various communication schemes. A CDMA (code-division, multiple-access) cellular communication system is an exemplary communication system, implemented utilizing code-division techniques.
Some cellular communication systems provide for the transmission of packet data to and from a mobile station. Information which is to be transmitted is formatted into discrete packets of data, and the packets are transmitted upon a communication channel. In a CDMA (code-division, multiple-access) communication scheme, for instance, a packet channel is assigned by allocation of a code, by which to encode packets of data which are to be transmitted by a transmitting station and to decode the packets, once received at a receiving station.
A dedicated channel, allocated to a user to communicate packet data thereon ensures ready access to the communication channel to communicate packet data thereon. As such ready access to the traffic channel necessitates allocation of the communication resources of the communication system, perhaps to the exclusion of other users, providing such ready access to a particular user is relatively resource consumptive.
Some packet data services are time-sensitive, while others are relatively time-insensitive. Packet-voice and packet-video services, e.g., are time-sensitive communication services. Ready access to the traffic channel upon which packet data is to be communicated is necessary to ensure timely delivery of the time-sensitive information. TCP/IP communications, such as those utilized for web-browsing communications, are, conversely, relatively time-insensitive. Internet system resources need not be allocated in a manner which dedicates a channel to effectuate such communications. Allocation of a channel on an as-needed basis is adequate to effectuate such communications.
A communication system which selectively provides for ready access to communicate packet data by ensuring allocation of a dedicated channel for its communication, depending upon the packet service-type would therefore be advantageous.
It is in light of this background information related to packet data communications, and communication systems permitting the communication of packet data, that the significant improvements of the present invention have evolved.
SUMMARY OF THE INVENTION
The present invention, accordingly, advantageously provides apparatus, and an associated method, for allocating communication channels for packet data communications with a mobile station in a multi-user, radio communication system.
One or more packet service-types are provided by the communication system. A QoS (quality of service) parameter is associated with each of the packet data service-types. The QoS parameter defines allowable access-delay times for access to communication channels to communicate packet data pursuant to the data service type thereon. System resources are allocated responsive to the QoS parameter of the service subscription. If the service subscription provides a QoS parameter calling for ready access to a communication channel upon which to communicate the packet data, the communication channel is allocated to a mobile station, even during periods of communication inactivity. If, conversely, the QoS parameter of the service subscription does not call for ready access to the communication channel to communicate packet data thereon, during periods of communication inactivity, a communication channel is not caused to remain allocated to the mobile station.
State machine apparatus define operational states in which a data service is caused to be operated. Responsive to communication activity of a mobile station used to effectuate the data service and the QoS parameter of the service subscription, the mobile station is caused to be translated into other operational states and appropriate levels of system resources are caused to be allocated thereto.
An embodiment of the present invention forms a portion of a CDMA (code-division, multiple-access), cellular communication system, such as that constructed in compliance with the IS-95 interim standard, or a successor, promulgated by the EIA/TIA. Mobile stations operable in such a communication system are managed by way of a network control architecture having multiple numbers of states. State transitions are dependent upon communication activity of the mobile stations as well as the QoS parameters of the packet data service-types pursuant to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

State apparatus, and associated methods, for controlling... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with State apparatus, and associated methods, for controlling..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and State apparatus, and associated methods, for controlling... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2978428

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.