Internal-combustion engines – Starting device – Compression relieving type
Reexamination Certificate
2002-07-22
2004-04-13
Yuen, Henry C. (Department: 3747)
Internal-combustion engines
Starting device
Compression relieving type
Reexamination Certificate
active
06718929
ABSTRACT:
BACKGROUND OF THE INVENTION
CROSS-REFERENCES TO RELATED APPLICATIONS
This nonprovisional application claims priority under 35 U.S.C. §119(a) on Patent Application No. 2001-224282 filed in Japan on Jul. 25, 2001, the entirety of which is herein incorporated by reference.
FIELD OF THE INVENTION
The present invention relates to a starting device and a method for starting an internal combustion engine provided with a crankshaft to be rotated by an electric motor at startup with the starting device, and more particularly to a starting device having an electric motor and a decompression mechanism for opening an engine valve which is lifted by a prescribed amount to reduce the compression pressure during the compression stroke of the internal combustion engine.
DESCRIPTION OF THE BACKGROUND ART
Internal combustion engines having a crankshaft rotated by a starter motor during startup are well known. The internal combustion engine having a decompression mechanism for opening the engine valve to be opened and closed by a valve train cam provided on the camshaft that is rotated synchronously with the rotation of the crankshaft is also known.
For example, in Japanese Patent Document 70366/1994, a decompression unit having a decompression cam and a reversing decompression cam supported on the camshaft via a one-way clutch is described. In the case where a piston in the compression stroke is moved slightly backward by the compression pressure when the internal combustion engine is stopped, the camshaft rotates in the reverse direction. The reversing decompression cam rotates integrally with the camshaft by action of the one-way clutch and opens an exhaust valve to decrease the compression pressure in a combustion chamber at the next startup of the engine.
When reverse rotation of the camshaft does not occur when the internal combustion engine is stopped, e.g., when the piston is in the expansion stroke, the decompression cam opens the exhaust valve during the compression stroke after the next startup timing to reduce the compression pressure in the combustion chamber. With such a decompression unit, decompression operation for reducing the compression pressure is performed only in the first compression stroke after startup.
SUMMARY OF THE INVENTION
The present inventors have determined that the background art suffers from the following disadvantages. During startup of an internal combustion engine, the camshaft starts to rotate in the normal direction from a position where the camshaft stopped previously in the decompression unit of the background art. The crank angle from the position when the crankshaft starts to rotate in the normal direction to the point where the first compression stroke starts after stoppage of decompression operation (compression bottom dead center) (hereinafter referred to as “run-up angle”) is determined by the position where the camshaft stops when the internal combustion engine is stopped. Therefore, depending on the stopped positions, a sufficient run-up angle may not be secured.
Accordingly, the revolving speed (angular speed) of the crankshaft is not sufficient for the piston to get over the first compression top dead center after cease of decompression operation, thereby hindering smooth starting. Such a circumstance tends to occur especially when the sliding friction of the internal combustion engine is excessive, e.g., for example, in case of low temperature starts or the like.
Therefore, in order to ensure that the piston can get over the first compression top dead center, the generated driving torque must be increased in the case where the starter motor is used for starting the internal combustion engine. Accordingly, the starter motor may have to be upsized disadvantageously. In addition, with the decompression units in the background art, it is difficult to increase the run-up angle significantly because the decompression operation is performed only during the first compression stroke after startup. The present invention overcomes these shortcomings associated with the background art and achieves other advantages not realized by the background art.
An object of the present invention is to provide a starting method and starting device for an internal combustion engine in which the run-up angle is increased so that the piston can easily overcome the first compression top dead center, e.g., particularly after decompression operations at startup have stopped, without increasing the size and capacity of the electric motor and/or starting device for rotating the crankshaft.
These and other objects are accomplished by a starting method for an internal combustion engine comprising the steps of rotating a crankshaft with an electric motor during an engine startup; opening an engine valve which is opened and closed by a valve train cam by a decompression mechanism, wherein the valve train cam is provided on a camshaft that is rotated synchronously with a rotation of the crankshaft, wherein the decompression mechanism includes a decompression cam provided on the camshaft in such a manner that the decompression cam is capable of rotating in the rotational range of the camshaft between a first stop position of the camshaft in a reverse rotational direction and a second stop position of the camshaft in a normal rotational direction and has a cam profile to bring the engine valve into an opened state at the first stop position and into a closed state at the second stop position; rotating the crankshaft in the reverse direction with the electric motor to rotate the decompression cam in the reverse direction to place the decompression cam in the first stop position at startup; rotating the crankshaft in the normal rotational direction with the electric motor to rotate the decompression cam in the normal rotational direction; and opening the engine valve by the decompression cam during either a compression stroke included within the range of a prescribed crank angle in which the crankshaft is rotated in the reverse direction by the electric motor or included within the range within a first compression stroke after a start of normal rotation of the decompression cam, or during the time period until the decompression cam reaches the second stop position.
These and other objects are further accomplished by a starting method for an internal combustion engine comprising the steps of rotating a crankshaft with an electric motor during an engine startup; opening an engine valve which is opened and closed by a valve train cam by a decompression mechanism, wherein the valve train cam is provided on a camshaft that is rotated synchronously with a rotation of the crankshaft, wherein the decompression mechanism includes a decompression cam provided on the camshaft in such a manner that the decompression cam is capable of rotating in the rotational range of the camshaft between a first stop position of the camshaft in a reverse rotational direction and a second stop position of the camshaft in a normal rotational direction and has a cam profile to bring the engine valve into an opened state at the first stop position and into a closed state at the second stop position; rotating the crankshaft in the reverse rotational direction with the electric motor to rotate the decompression cam in the reverse direction to place the decompression cam in the first stop position at startup; rotating the crankshaft in the normal rotational direction with the electric motor to rotate the decompression cam in the normal direction; and opening the engine valve with the decompression cam at a plurality of compression strokes during a period until the decompression cam reaches the second stop position.
These and other objects are further accomplished by a starting device for an internal combustion engine, wherein the starting device includes an electric motor for rotating a crankshaft during an engine startup, an engine valve with a valve train cam, a control device for controlling rotation of the crankshaft with the electric motor, and a decompression mechanism for opening the engine valve to be opened
Ikui Kuniaki
Ogasawara Atsushi
Onozawa Seiji
Birch, Stewart, Kolasch & Brich, LLP
Castro Arnold
Honda Giken Kogyo Kabushiki Kaisha
Yuen Henry C.
LandOfFree
Starting method for internal combustion engine and starting... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Starting method for internal combustion engine and starting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Starting method for internal combustion engine and starting... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3217548