Data processing: database and file management or data structures – Database design – Data structure types
Reexamination Certificate
2000-02-28
2002-08-13
Homere, Jean R. (Department: 2177)
Data processing: database and file management or data structures
Database design
Data structure types
C707S793000, C707S793000, C707S793000
Reexamination Certificate
active
06434544
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates to a method of and system for aggregating data elements in a multi-dimensional database (MDDB) supported upon a computing platform and also to provide an improved method of and system for managing data elements within a MDDB during on-line analytical processing (OLAP) operations.
2. Brief Description of the State of the Art
The ability to act quickly and decisively in today's increasingly competitive marketplace is critical to the success of organizations. The volume of information that is available to corporations is rapidly increasing and frequently overwhelming. Those organizations that will effectively and efficiently manage these tremendous volumes of data, and use the information to make business decisions, will realize a significant competitive advantage in the marketplace.
Data warehousing, the creation of an enterprise-wide data store, is the first step towards managing these volumes of data. The Data Warehouse is becoming an integral part of many information delivery systems because it provides a single, central location where a reconciled version of data extracted from a wide variety of operational systems is stored. Over the last few years, improvements in price, performance, scalability, and robustness of open computing systems have made data warehousing a central component of Information Technology CIT strategies. Details on methods of data integration and constructing data warehouses can be found in the white paper entitled “Data Integration: The Warehouse Foundation” by Louis Rolleigh and Joe Thomas, published at http:/www.acxiom.com.whitepapers/wp-11.asp.
Building a Data Warehouse has its own special challenges (e.g. using common data model, common business dictionary, etc.) and is a complex endeavor. However, just having a Data Warehouse does not provide organizations with the often-heralded business benefits of data warehousing. To complete the supply chain from transactional systems to decision maker, organizations need to deliver systems that allow knowledge workers to make strategic and tactical decisions based on the information stored in these warehouses. These decision support systems are referred to as On-Line Analytical Processing (OLAP) systems. OLAP systems allow knowledge workers to intuitively, quickly, and flexibly manipulate operational data using familiar business terms, in order to provide analytical insight into a particular problem or line of inquiry. For example, by using an OLAP system, decision makers can “slice and dice” information along a customer (or business) dimension, and view business metrics by product and through time. Reports can be defined from multiple perspectives that provide a high-level or detailed view of the performance of any aspect of the business. Decision makers can navigate throughout their database by drilling down on a report to view elements at finer levels of detail, or by pivoting to view reports from different perspectives. To enable such full-functioned business analyses, OLAP systems need to (1) support sophisticated analyses, (2) scale to large numbers of dimensions, and (3) support analyses against large atomic data sets. These three key requirements are discussed further below. Decision makers use key performance metrics to evaluate the operations within their domain, and OLAP systems need to be capable of delivering these metrics in a user-customizable format. These metrics may be obtained from the transactional databases precalculated and stored in the database, or generated on demand during the query process. Commonly used metrics include:
(1) Multidimensional Ratios (e.g. Percent to Total) “Show me the contribution to weekly sales and category profit made by all items sold in the Northwest stores between July 1 and July 14.”
(2) Comparisons (e.g. Actual vs. Plan, This Period vs. Last Period) “Show me the sales to plan percentage variation for this year and compare it to that of the previous year to identify planning discrepancies.”
(3) Ranking and Statistical Profiles (e.g. Top N/Bottom N, 70/30, Quartiles) “Show me sales, profit and average call volume per day for my 20 most profitable salespeople, who are in the top 30% of the worldwide sales.”
(4) Custom Consolidations “Show me an abbreviated income statement by quarter for the last two quarters for my Western Region operations.”
Knowledge workers analyze data from a number of different business perspectives or dimensions. As used hereinafter, a dimension is any element or hierarchical combination of elements in a data model that can be displayed orthogonally with respect to other combinations of elements in the data model. For example, if a report lists sales by week, promotion, store, and department, then the report would be a slice of data taken from a four-dimensional data model.
Target marketing and market segmentation applications involve extracting highly qualified result sets from large volumes of data. For example, a direct marketing organization might want to generate a targeted mailing list based on dozens of characteristics, including purchase frequency, size of the last purchase, past buying trends, customer location, age of customer, and gender of customer. These applications rapidly increase the dimensionality requirements for analysis.
The number of dimensions in OLAP systems range from a few orthogonal dimensions to hundreds of orthogonal dimensions. Orthogonal dimensions in an exemplary OLAP application might include Geography, Time, and Products.
Atomic data refers to the lowest level of data granularity required for effective decision making. In the case of a retail merchandising manager, “atomic data” may refer to information by store, by day, and by item. For a banker, atomic data may be information by account, by transaction, and by branch. Most organizations implementing OLAP systems find themselves needing systems that can scale to tens, hundreds, and even thousands of gigabytes of atomic information.
As OLAP systems become more pervasive and are used by the majority of the enterprise, more data over longer time frames will be included in the data store (i.e. data warehouse), and the size of the database will increase by at least an order of magnitude. Thus, OLAP systems need to be able to scale from present to near-future volumes of data.
In general, OLAP systems need to (1) support the complex analysis requirements of decision-makers, (2) analyze the data from a number of different perspectives (i.e. business dimensions), and (3) support complex analyses against large input (atomic-level) data sets from a Data Warehouse maintained by the organization using a relational database management system (RDBMS).
Vendors of OLAP systems classify OLAP Systems as either Relational OLAP (ROLAP) or Multidimensional OLAP (MOLAP) based on the underlying architecture thereof. Thus, there are two basic architectures for On-Line Analytical Processing systems: The ROLAP Architecture, and the MOLAP architecture.
Overview of The Relational OLAP (ROLAP) System Architecture
The Relational OLAP (ROLAP) system accesses data stored in a Data Warehouse to provide OLAP analyses. The premise of ROLAP is that OLAP capabilities are best provided directly against the relational database, i.e. the Data Warehouse.
The ROLAP architecture was invented to enable direct access of data from Data Warehouses, and therefore support optimization techniques to meet batch window requirements and provide fast response times. Typically, these optimization techniques include application-level table partitioning, pre-aggregate inferencing, denormalization support, and the joining of multiple fact tables.
As shown in
FIG. 1A
, a typical prior art ROLAP system has a three-tier or layer client/server architecture. The “database layer” utilizes relational databases for data storage, access, and retrieval processes. The “application logic layer” is the ROLAP engine which executes the multidimensional reports from multiple users. The ROLAP engine integrates with a variety of “presentation
Bakalash Reuven
Caspi Joseph
Shaked Guy
Ferkowski Esq., P.C. Thomas J.
Homere Jean R.
Hyperroll Israel, Ltd.
Wassum Luke S
LandOfFree
Stand-alone cartridge-style data aggregation server... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Stand-alone cartridge-style data aggregation server..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stand-alone cartridge-style data aggregation server... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2941723