Stable, covalently-bonded supports for chemical separation appar

Catalyst – solid sorbent – or support therefor: product or process – Solid sorbent – Organic

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

502158, 502407, 502414, B01J 2006, B01J 2022, B01J 2030

Patent

active

053267389

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

This invention relates to a surface-modified material used in a wide variety of separation applications such as chromatography and electrophoresis.
More particularly, the invention pertains to a chemically modified mineral oxide such as silica, quartz or the like, which exhibits improved hydrolytic stability, larger organic coverage and superior separative capabilities when formed into various forms or shapes, such as porous beads or capillary tubes.


BACKGROUND OF THE INVENTION

Chemically modified silicas have been, and continue to be, widely used as supports in a great variety of chromatographic separations. With the aim of controlling its selectivity while reducing unwanted interactions with one or more compounds, numerous synthetic procedures have been developed to attach organic moieties (R) on the silica surface. Early work on the chemical modification of silica (Halasz and Sebastian, Angew. Chem. (Int. Ed.) 8:453 (1969); Deuel et al., Helv. Chim. Acta 119:1160 (1959)) described the use of an esterification reaction between surface silanol groups (SiOH) and an alcohol to give a structure of the following type: ##STR1## Although such materials were useful for many separations, their limited hydrolytic stability seriously precluded the extensive usage of these bonded phases, particularly in liquid chromatography which requires the use of aqueous eluents.
Currently, commercially available bonded phases are prepared by reacting selected organosilanes with the silica surface. Halogen- or alkoxy-substituted alkyldimethylsilanes are the most commonly used silanizing reagents. The resulting bonded support bears monolayer surface structures of the following type: ##STR2## By changing the structure of the R group, it is possible to produce bonded silicas with a great variety of organic groups, ranging from non-polar materials, for instance, octyl- and octadecyl-silicas commonly used as bonded supports in reversed-phase liquid chromatography, to ionic materials such as benzenesulphonic acid derivatives which are widely used in ion-exchange liquid chromatography. The preparation of these and similar materials are described in a number of publications (e.g., Roumeliotis and Unger, J. Chromatogr. 149:211 (1978) or Asmus et al. J. Chromatogr. 123:109 (1976)) and patents (Sebastian et al. U.S. Pat. No. 3,956,179; Hancok et al. U.S. Pat. No. 4,257,916; or Ramsden et al. U.S. Pat. No. 4661,248).
In a related approach, polymeric (multilayer) bonded stationary phases are prepared from bi- or tri-substituted organosilanes with the general formula X.sub.n SiR.sub.4-n, where X=alkoxy, halide or any easily hydrolyzed group, and n=2,3. The resulting polymeric bonded support bears repeating surface structures of the type ##STR3## where Y=--R (n=2) or --O-- (n=3) and the oxygen atom (--O--) is bonded either to a hydrogen (that is, as part of a free silanol, Si--O--H) or to another silicon atom (that is, as part of a siloxane linkage, Si--O--Si). A number of patents and publications describe the preparation of these materials (Kirkland and Yates, U.S. Pat. Nos. 3,722,181 (1973), and 3,795,313 (1974); Novotny et al., J. Chromatog. 83:25 (1973); Sander and Wise, Anal. Chem. 56:504 (1984)). Although in many instances these bonded supports provide satisfactory separations, the lack of control of the polymerization process seems to be a major contributor to such problems as irreproducible layer thickness and incomplete silanol condensation. This limitation has confined polymeric bonded stationary phases to applications where the presence of a multilayer is necessary and/or its thickness is relatively unimportant. As a consequence, the vast majority of liquid chromatographic separations are carried out with monolayer bonded phases.
The recent development of electrophoretic separations in a capillary format has promoted the extent of the silanization technology normally used in chromatography to the deactivation of the inner wall of the fused silica capillary. Thus, Jorgenson et al. (Science 222:266 (1983)) h

REFERENCES:
patent: 2705222 (1955-03-01), Wagner
patent: 3839385 (1974-10-01), Meiller et al.
patent: 3950269 (1976-04-01), Setterquist
patent: 3956179 (1976-05-01), Sebestian et al.
patent: 4257916 (1981-03-01), Hancock et al.
patent: 4324873 (1982-04-01), Wada et al.
patent: 4335022 (1982-06-01), Slaugh
patent: 4467048 (1984-08-01), Johnson
patent: 4555395 (1985-11-01), Sirovich et al.
patent: 4661248 (1987-04-01), Ramsden et al.
patent: 4680201 (1987-07-01), Hjerten
patent: 4701430 (1987-10-01), Jung et al.
patent: 4705725 (1987-11-01), Glajch et al.
patent: 4746572 (1988-05-01), Glajch et al.
patent: 4828695 (1989-05-01), Yamamura et al.
patent: 4904632 (1990-02-01), Pesek et al.
patent: 4946818 (1990-08-01), Lewis
patent: 4959340 (1990-09-01), Williams
patent: 5017540 (1991-05-01), Sandoval et al.
patent: 5203991 (1993-04-01), Katsuna et al.
Deuel et al., "119. Organische Derivate des Silikagels mit Si-O-C-Bindung I", Helvetica Chimica Acta, vol. 42, No. 119, pp. 1160-1165, 1959.
Slinyakova et al., "Adsorption and other properties of a hydrogen-silica adsorbent with Si-H bond (polysiloxane hydride xerogel)", Kolloidn. Zh., vol. 27, No. 5, pp. 758-764, 1965. (English abstract/translation provided.)
Budkevich et al., "Reduction properties of hydridepolysiloxane xerogel", Kolloidn. Zh., vol. 28, No. 1, pp. 21-26, 1966. (English abstract provided.)
Slinyakova et al., "An investigation of adsorptive properties of ethylphenyl and hydridopolysiloxanes by gas chromatography", Ukr. Khim. Zh., vol. 33, No. 4, pp. 373-376, 1967. (English abstract provided.)
Kol'tsov et al., "The effect of the degree of dehydration of silica gel on the mechanism of hydrolysis of trichlorosilane", Russian Journal of Physical Chemistry, vol. 41, No. 3, pp. 336-337, Mar. 1967.
Morterra et al., "Reactive Silica. I. The Formation of a Reactive Silica by the Thermal Collapse of the Methoxy Groups of Methylated Aerosil", J. Phsy. Chem., vol. 73, No. 2, pp. 321-326, Feb. 1969.
Morterra et al., "Reactive Silica. II. The Nature of the Surface Silicon Hydrides Produced by the Chemisorption of Hydrogen", J. Phys. Chem., vol. 73, No. 2, pp. 327-333, Feb. 1969.
Halasz et al., "New Stationary Phase for Chromatography", Angew. Chem. internat. Edit., vol. 8, No. 6, pp. 453-454, 1969.
Budkevich et al., "Adsorption of various substances from their solution in hexane and carbon tetrachloride on hydride-polysiloxane xerogel and silica gel", Kolloidn. Zh., vol. 32, No. 1, pp. 17-23, 1970. (English abstract.)
Budkevich et al., "Thermooxidative degradation of hydridopolysiloxane xerogel", Kur. Khim. Zh., vol. 37, No. 5, pp. 429-433, 1971. (English abstract provided.)
Roumeliotis et al., "Structure and Properties of n-Alkyldimethylsilyl Bonded Silica Reversed-Phase Packings", Journal of Chromatography, vol. 149, pp. 211-224, 1978.
Speier, "Homogeneous Catalysis of Hydrosilation by Transition Metals", Advances in Organometallic Chemistry, vol. 17, pp. 407-447, 1979.
Jorgenson et al., "Capillary Zone Electrophoresis", Science, vol. 222, pp. 266-272, Oct. 21, 1983.
Kirkland et al., "Liquid Phase Separation Methods: HPLC, FFFF, Electrophoresis", Chromatographia, vol. 24, pp. 58-76, 1987.
Sandoval et al., "Synthesis and Characterization of a Hydride-Modified Porous Silica Material as an Intermediate in the Preparation of Chemically Bonded Chromatographic Stationary Phases," Analytical Chemistry, vol. 61, No. 18, pp. 2067-2075, Sep. 15, 1989.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Stable, covalently-bonded supports for chemical separation appar does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Stable, covalently-bonded supports for chemical separation appar, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stable, covalently-bonded supports for chemical separation appar will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-795945

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.