Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...
Reexamination Certificate
1999-02-02
2001-02-13
Ogden, Necholus (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
For cleaning a specific substrate or removing a specific...
C510S275000, C510S281000, C510S286000, C510S290000, C510S302000, C510S309000, C510S405000, C510S406000, C510S414000, C510S503000
Reexamination Certificate
active
06187738
ABSTRACT:
BACKGROUND OF THE INVENTION
I. Field of the Invention
The present invention relates to aqueous compositions capable of removing stains from fabrics and carpets. Specifically, the present invention relates to aqueous compositions for removing water and protein stains from fabrics and carpets. Such compositions contain one or more peroxygen compounds and at least one surfactant. More specifically, the present invention relates to such compositions that exhibit superior solution stability and reduced turbidity.
II. Description of the Prior Art
Fabric and carpet fibers easily stain upon contact with water and proteinaceous materials. Such stains are conventionally removed by compositions containing combinations of cleansing surfactants that lift and remove water and protein stains from the fabric. Stain remover compositions may also be formulated to further contain an active oxygen-containing compound (more commonly referred to as a peroxygen compound), such as hydrogen peroxide. Peroxygen compounds oxidize and decolorize stains formed by contact with water and proteinaceous materials.
Fabric cleaning compositions also commonly contain one or more anti-resoiling agents, commonly referred to as soil resists. Soil resists prevent or impede the resoiling of the fabric after cleaning. One type of soil resist, an olefinic/acrylate polymer, is described in U.S. Pat. No. 5,534,167 to Billman. See also U.S. Pat. No. 5,001,004 to Fitzgerald et al. In surfactant-containing cleaning compositions, a polymeric or copolymeric soil resist embrittles the surfactants upon drying. Embrittlement prevents the surfactants from drying into a waxy, tacky layer that remains on the fabric after removal of the cleaning composition. If left on the fabric, such a waxy, tacky layer will attract and hold dirt on the surface of the cleaned fabric.
In addition to providing acceptable stain removal ability, stain removal compositions must be storage stable. A stain removal product may be stored by the ultimate consumer for many months before use under less than ideal conditions. During storage, the components of the composition cannot separate from each other if the composition is to remain fully effective. Furthermore, the composition cannot become turbid as a turbid product is not acceptable to the consumer. The problem of compositional instability is further exacerbated when a peroxygen compound is employed. Peroxygen compounds easily degrade and the decolorizing ability of a peroxygen compound is quickly lost upon degradation. Furthermore, degradation of a peroxygen compound generates gases that can cause swelling of the package in which the stain removing composition is provided.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an aqueous stain-removing composition for removing water and protein-type stains from fabrics and carpets.
It is also an object of the present invention to provide such a composition that will further prevent or inhibit the resoiling of the cleaned fabrics and carpet.
It is another object of the present invention to provide such a composition that includes a surfactant system, a peroxygen compound and a polymeric or copolymeric soil resist.
It is a still further object of the present invention to provide such a composition in which all ingredients are selected such that all are compatible and form a stable, non-turbid solution.
To accomplish the foregoing objects and advantages, the present invention, in brief summary, is a clear, stable, stain removing solution comprising: a peroxygen compound; a surfactant system; and a polymeric or copolymeric soil resist.
DETAILED DESCRIPTION OF THE INVENTION
The compositions of the present invention are aqueous cleaning compositions. Such compositions are stain removing compositions containing one or more peroxygen compounds, one or more surfactants, and one or more polymeric or copolymeric soil resists. Optionally, the composition may contain additional components, such as a preservative, a stabilizer/pH controller, and a fragrance.
It has been found that by proper selection of the cleansing surfactants, a stable, non-turbid solution can be formed in the presence of the peroxygen compound and the polymeric or copolymeric soil resist. Such stability provides for more latitude in formulating the cleaning composition, allows for the use of reduced amounts of a stabilizer compound (chelating agent), and results in a superior and stable product.
The compositions of the present invention include from about 0.2 to about 6.0 percent by weight (wt. %), preferably from about 1.0 to about 4.0 wt. %, and most preferably from about 2.5 to about 3.5 wt. %, of a peroxygen compound. Peroxygen compounds suitable for use in the present invention include hydrogen peroxide and T-butyl hydroperoxide. The use of hydrogen peroxide is preferred. It is conventional in the art to use an industrial grade hydrogen peroxide in the formation of cleaning products. However, it has been found that the use of a higher purity hydrogen peroxide, such as hydrogen peroxide sold under the name Super D™, a product of EMC (USA), or Ultracosmetic™ grade provided by Solvay Interox Inc., (USA) provides the composition with an improved stability that justifies the higher initial costs of such peroxides.
The total amount of surfactant in the compositions of the present invention is from about 0.2 to about 6.0 wt. %, preferably from about 0.5 to about 3.0 wt. %, and most preferably from about 1.0 to about 1.5 wt. %. Surfactants suitable for use in the surfactant system of the present compositions include anionic, cationic, nonionic and zwitterionic surfactants, which are all well known in the art. Preferably, the compositions of the present invention include anionic and/or nonionic surfactants. Most preferably, the compositions include a mixture of anionic and nonionic surfactants.
Suitable anionic surfactants include, for example, alcohol sulfates (e.g. alkali metal or ammonium salts of alcohol sulfates) and sulfonates, alcohol phosphates and phosphonates, alkyl sulfonates, alkylaryl sulfonates, alkali metal or ammonium salts of fatty acids, sulfonated amines, sulfonated amides, fatty sarcosinates such as sodium lauroyl sarcosinate, linear alkylated sulfonates such as alkylbenzene sulfonates where the R-group is attached between C
6
-C
15
, alcohol ether sulfates such as those with the structure R=C
8
-C
15
and where ethoxylation is between 1-7, secondary alkane sulfonates such as the Hostapur SAS series supplied by Hoechst Celanese, and mixtures thereof. A more complete list of anionic surfactants is provided in McCutcheon's, Volume 1, Emulsifiers and Detergents, pp. 280-283 (1997), which is incorporated herein by reference. Preferred anionic surfactants for use in the compositions of the present invention include sodium lauryl sulfate and sodium lauroyl sarcosinate.
Nonionic surfactants suitable for use in the compositions of the present invention include, for example, ethoxylated and propoxylated alcohols such as linear alkyl alcohol ethoxylates from the Neodol series that are available from Shell, ethylene oxide/propylene oxide copolymers, ethoxylated and propoxylated fatty acids, ethoxylated and propoxylated alkyl phenols, alkyl polyglycosides, alkyl secondary alcohol ethoxylates, and n-alkylpyrrolidones such as caprylyl pyrrolidone and lauryl pyrrolidone, amine oxides, and mixtures thereof. Particularly, fatty amine oxides such as lauramine oxide, alkyl ethoxylated amine oxides such as C
12
-C
15
diethanol amine oxide, and ether amine oxides. A more complete list of nonionic surfactants is also provided in McCutcheon's, supra, pp. 283-289. The most preferred nonionic surfactants are lauramine oxide and C
11
-C
15
Pareth 7 (a C
11
-C
15
alkyl secondary alcohol ethoxylate) sold by Union Carbide under the tradename Tergitol 15-S-7.
Among the suitable zwitterionic surfactants that can be used in the composition are betaines. For example, cocoamidopropyl betaine, which is supplied by Hoechst Celanese under the tradename Genagen CAB, can be
Belansky Carol
Lynch Ann Marie
Micciche Robert P.
Tripathi Uma
Ogden Necholus
Ohlandt Greeley Ruggiero & Perle LLP
Playtex Products Inc.
LandOfFree
Stable compositions for removing stains from fabrics and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Stable compositions for removing stains from fabrics and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stable compositions for removing stains from fabrics and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2594875