Stabilizer for robotic beating-heart surgery

Surgery – Specula – Retractor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S235000, C600S228000

Reexamination Certificate

active

06398726

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention generally relates to surgical tools, methods, and systems for stabilizing, retracting, and/or inhibiting physiological movement of tissues. In a particular embodiment, the invention provides a robotic surgical stabilizer for use during robotic surgical treatments on a beating heart.
Coronary artery disease remains the leading cause of morbidity and mortality in western societies. A number of approaches have been developed for treating coronary artery disease. While lifestyle changes, endovascular approaches (such as balloon angioplasty, atherectomy, and the like) and/or pharmaceutical treatments are often effective, in many cases it is necessary to resort to surgical procedures such as coronary artery bypass grafting to effectively treat coronary artery disease.
Coronary artery bypass grafting procedures are commonly performed using open-heart techniques. These open procedures generally involve dividing the patient's sternum and spreading the chest to provide access to the heart. The patient is placed on a heart/lung machine, which oxygenates the patient's blood and pumps it through the circulatory system during the surgical procedure. After the patient is on cardiopulmonary bypass, drugs are administered to temporarily stop the patient's heart (cardioplegia) to allow the grafting procedure to be performed. Typically, a source of arterial blood is connected to a coronary artery downstream from an occlusion, thereby bypassing the occlusion. The source of blood may include the left or right internal mammary artery.
While very effective in many cases, the use of open-heart surgery to perform coronary artery bypass grafting is highly traumatic to the patient. Thus, minimally invasive medical technique for performing cardiac surgeries have recently been proposed. These minimally invasive techniques are generally aimed at reducing the amount of extraneous tissue which is damaged during diagnostic or surgical procedures. This can effectively reduce the patient's recovery time, discomfort, and other deleterious side effects of cardiac surgery. Others have proposed techniques and devices for performing open surgery on a heart while the heart is beating. These proposals generally involve stabilizing a region of the heart by engaging the heart with a tool called a stabilizer. Unfortunately, the proposed techniques for both minimally invasive cardiac surgery and beating-heart cardiac surgery significantly increase the difficulty of these already complex surgical procedures. Formation of the anastomosis (the connection between the arterial source and the occluded artery) is quite challenging in a standard coronary artery bypass grafting procedure when the heart tissues are immobile and exposed for direct manipulation. Even skilled surgeons may find it awkward and/or time consuming to instead perform such procedure in a minimally invasive manner or while the heart is beating.
In robotically assisted surgery, the surgeon typically operates one or more master controllers to remotely control the motion of surgical instruments at the surgical site. The controller may be separated from patient by a significant distance (for example, across the operating room, in a different room, or in a completely different building than the patient). Alternatively, the surgeon's work station with the controllers may be positioned quite near the patient in the operating room. Regardless, the controller will typically include one or more hand input devices, such as a joystick, exo-skeletal gloves, or the like.
The hand input devices of the surgeon's workstation are generally coupled to the surgical instrument by a servomechanism. More specifically, servomotors move a manipulator, or “slave” supporting the surgical instrument based on the surgeon's manipulation of the hand input devices.
During a robotic surgical operation, a surgeon using a robotic surgical system may employ, via the manipulator, a variety of surgical instruments, such as tissue graspers, needle drivers, electrosurgical cautery probes, and the like. Each of these structures perform functions for the surgeon, for example, holding or driving a needle, grasping a blood vessel, dissecting, cauterizing, and/or coagulating tissue, and the like. The surgeon and/or an assistant will mount robotic surgical instruments having suitable end effectors to the manipulator, and will often pass the end effectors through cannula sleeves to an internal surgical site, so as to treat the targeted tissues while minimizing injury to the adjacent tissue structures.
In light of the above it would be desirable to provide improved medical devices, systems, and methods. It would be particularly desirable if these improved techniques facilitated coronary artery bypass grafting and other therapies for tissues which undergo physiological movement. It would further be beneficial to provide robotic tools and robotic surgical techniques for treatment of these tissues so as to take advantage of the recently proposed automated systems to improve the ease and speed with which complex surgeries might be performed, while minimizing the deleterious side effects associated with accessing and/or temporarily inhibiting the motion of the target tissues.
SUMMARY OF THE INVENTION
The present invention provides surgical methods and devices which allow closed-chest surgery to be performed on a heart of a patient while the heart is beating. A region of the heart is often stabilized by engaging a surface of the heart with a stabilizer. The stabilizer can inhibit (i.e., substantially reduce) physiological motion of the stabilized region without having to stop the heart. While the stabilized region will not necessarily be absolutely still, motion of the target tissues can be inhibited sufficiently to treat the target tissues, particularly with robotic surgical tools which move in response to inputs of a robotic system operator. A stabilizing surface of the stabilizer will often be coupled to a drive system to position the surface from outside the patient, preferably by actuators of the robotic servomechanism, although manual manipulation from outside the body to position the stabilizer is also possible. Exemplary stabilizers include one or more sutures or other flexible and/or elastic tension members spanning between a pair of jointed bodies, thereby allowing the member to occlude a coronary blood vessel and/or help stabilize the target region between a pair of separated stabilizing surfaces.
In a first aspect, the invention provides a tissue stabilizer for use with a robotic surgical system to treat a target tissue within a patient body. The robotic surgical system has a plurality of manipulators with actuators for moving surgical end effectors in response to inputs by a system operator into an input device. The tissue stabilizer comprises a shaft having a proximal end and a distal end. A first stabilizer body has a stabilizing surface adapted to engage and inhibit movement of the target tissue. A joint couples the distal end of the shaft to the stabilizer, and a drive system is drivingly coupled to the joint so that the stabilizer body can be moved relative to the shaft from outside the patient body. The drive system may allow the stabilizer surface to be positioned using the actuators of a manipulator.
The drive system may be remotely controlled with master controls manipulated by the surgeon or with a manual control outside the body and manipulated by a surgeon's assistant at the patient's side. Preferably, a wrist assembly couples the stabilizer body to the shaft so as to provide first and second degrees of freedom, with the degrees of freedom often being about perpendicular lateral pivotal axes. An exemplary stabilizer includes first and second stabilizer bodies coupled together at a joint so that first and second stabilizing surfaces preferably remain substantially aligned when the bodies are moved relative to each other by the actuators of the manipulator supporting the proximal end of the shaft.
In a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Stabilizer for robotic beating-heart surgery does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Stabilizer for robotic beating-heart surgery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stabilizer for robotic beating-heart surgery will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2903322

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.