Organic compounds -- part of the class 532-570 series – Organic compounds – Unsubstituted hydrocarbyl chain between the ring and the -c-...
Reexamination Certificate
1998-06-09
2001-01-30
Berch, Mark L. (Department: 1611)
Organic compounds -- part of the class 532-570 series
Organic compounds
Unsubstituted hydrocarbyl chain between the ring and the -c-...
Reexamination Certificate
active
06180783
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to stabilized forms of carbapenem compounds and intermediates used in their preparation. Such stabilized forms are particularly useful in reducing the degradation associated with the preparation of carbapenems and improving overall yields.
SUMMARY OF THE INVENTION
A stabilized carbapenem intermediate compound represented by the formula 1:
or a salt thereof is disclosed wherein P represents a carboxyl protecting group and X represents a charge balancing group.
In addition, a process for synthesizing a compound represented by formula 2:
or a pharmaceutically acceptable salt or ester thereof, is disclosed wherein X is a charge balancing group, comprising:
deprotecting a compound of the formula 1 to produce a compound of formula 2.
DETAILED DESCRIPTION OF THE INVENTION
As used herein, the term “stabilized form” refers to compounds which have a carbamate group formed at the pyrrolidine nitrogen atom, as shown in compound 1. The carbamate 1 can be obtained as shown below in Flow Sheet A.
Flow sheet A-2 below provides a preferred process as it relates to 1&bgr;-methyl carbapenems.
Compounds 3 and 3′ can be obtained using the disclosures contained in U.S. Pat. Nos. 4,994,568 granted on Feb. 19, 1991; 5,478,820 granted on Dec. 26, 1995; 4,269,772 granted on May 26, 1981; 4,350,631 granted on Sep. 21, 1982; 4,383,946 granted on May 17, 1983; 4,414,155 granted on Nov. 8, 1983; Tet. Let. 21, 2783 (1980); J. Am. Chem. Soc. 108, 6161 (1980); and J. Am. Chem. Soc. 108, 4675 (1986). The teachings of these references are incorporated by reference.
Compounds 4 and 4′ can be obtained using the disclosure contained in Betts, et al. U.S. Pat. No. 5,478,820.
The compound of formula 1 or a salt thereof is produced by reacting the enol phosphate 3 and side chain precursor 4 in the presence of a base. This reaction is typically conducted at reduced temperature, e.g., about −30° C. to about −50° C. Bases which are suitable for the above reaction include organic as well as inorganic bases. A preferred base for use herein is sodium hydroxide.
The reaction can be conducted in an organic solvent, e.g., N-ethyl pyrrolidinone, N-methyl pyrrolidinone, N,N-dimethylformamide and the like.
Any excess base which is present in the reaction can be quenched, such as by the addition of an ester, e.g., isopropyl acetate or ethyl acetate.
After coupling, the carbapenem is stabilized by combining the carbapenem with a carbon dioxide source. This provides a transient structure of formula 1 where X
+
represents a charge balancing counterion. Examples of carbon dioxide sources include carbon dioxide gas, bicarbonates, such as sodium and potassium bicarbonate, and carbonates such as sodium and potassium carbonate.
Stabilization can be conducted under substantially neutral to slightly basic conditions, e.g., about pH 7.0 to about 8.5.
After stabilization, the carbapenem is subject to deprotection, thus removing the 3-carboxyl protecting group. The pyrrolidine nitrogen is maintained in the carbamate form during hydrogenolysis.
A preferred deprotection reaction is hydrogenolysis, which can be conducted using hydrogen gas or a compound which forms hydrogen.
Hydrogenolysis effectively removes the protecting group from the 3-carboxylate without substantially disrupting the &bgr;-lactam ring or the stabilized carbamate form of the pyrrolidine amine.
Hydrogenolysis is typically conducted in the presence of a metal catalyst. The preferred reaction involves H
2
gas with a palladium (Pd/C) catalyst. If necessary, base can be added. A preferred base is sodium hydroxide or sodium bicarbonate.
The stability of the pyrrolidine N-carbamate is pH dependent and is readily converted to the unsubstituted pyrrolidine amine or ammonium salt under neutral to mildly acidic conditions. The carbapenem, or a salt or ester thereof, is then suitable for isolation, formulation or elaboration.
Carbon dioxide sources, as used herein, refer to carbon dioxide gas as well as compounds which produce carbon dioxide upon dissolution. Representative examples include carbonates and bicarbonates, such as sodium carbonate, sodium bicarbonate, potassium carbonate and potassium bicarbonate. Preferably the carbonates and bicarbonates are used. Most preferably, the carbon dioxide source is sodium bicarbonate.
The carbon dioxide source can alternatively be included in the reaction medium prior to or during the deprotection reaction. These blocking groups are readily removable, i.e., they can be removed, if desired, by procedures which will not cause cleavage or other disruption of the remaining portions of the molecule. Such procedures include chemical and enzymatic hydrolysis, treatment with chemical reducing or oxidizing agents under mild conditions, treatment with fluoride ion, treatment with a transition metal catalyst and a nucleophile, and catalytic hydrogenolysis.
Examples of suitable carboxyl protecting groups are: benzhydryl, o-nitrobenzyl, p-nitrobenzyl, 2-naphthylmethyl, allyl, 2-chloroallyl, benzyl, 2,2,2-trichloroethyl, trimethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, 2-(trimethylsilyl)ethyl, phenacyl, p-methoxybenzyl, acetonyl, p-methoxyphenyl, 4-pyridylmethyl and t-butyl. A preferred carboxyl protecting group is p-nitrobenzyl.
Many other suitable protecting groups are known in the art. See, e.g., T. W. Greene,
Protective Groups in Organic Svnthesis
, John Wiley & Sons, Inc., 1981 (Chapters 2 and 5).
Numerous salt-forming ions are recited in Berge, S. M., et al.
J. Pharm. Sci
. 66(1): 1-16 (1977), the teachings of which are incorporated herein by reference. The charge balancing group X, maintains overall charge neutrality. Preferably X represents a pharmaceutically acceptable salt forming cation.
Preferred salt-forming cations are selected from the group consisting of: sodium, potassium, calcium and magnesium.
More preferably the salt forming cation is a member selected from the group consisting of: Na
+
, Ca
+2
and K
+
.
The salt forming cations mentioned above provide electronic balance and overall charge neutrality. From zero to three positively charged counterions may be present, depending upon the number of charged moieties on the carbapenem. This is largely a function of pH, since at low pH, protonation of the negatively charged moieties may occur. Different counterions may also be included in the overall composition. Hence, for example, calcium and sodium could be included together in the pharmaceutical composition to provide overall charge neutrality. The counterions can thus be varied within wide limits. Generally the counterion or counterions are pharmaceutically acceptable cationic species.
The compounds formed in the present invention have asymmetric centers and occur as racemates, racemic mixtures, and as individual diastereomers. The processes of synthesizing all such isomers, including optical isomers, are included in the present invention.
REFERENCES:
patent: 4269772 (1981-05-01), Melillo et al.
patent: 4383946 (1983-05-01), Christensen et al.
patent: 4414155 (1983-11-01), Liu et al.
patent: 4994568 (1991-02-01), Christensen
patent: 5478820 (1995-12-01), Betts et al.
patent: 97/45430 (1997-12-01), None
L. M.Fuentes, et al.,J. Am. Chem. Soc., 108, pp. 4675-4676 (1986).
C. Wentrup et al.,J. Am. Chem. Soc., 102, pp. 6161-6163 (1980).
D. C. Melillo et al.Tet Ltr, 21, p. 2783 (1980).
Brands Karel M. J.
Dolling Ulf H.
Jobson Ronald B.
Skerlj Renato T.
Williams John M.
Ayler Sylvia A.
Berch Mark L.
Daniel Mark R.
Merck & Co. , Inc.
LandOfFree
Stabilized carbapenem intermediates and improved process for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Stabilized carbapenem intermediates and improved process for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stabilized carbapenem intermediates and improved process for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2519706