Electricity: measuring and testing – Particle precession resonance
Reexamination Certificate
2005-04-26
2005-04-26
Arana, Louis (Department: 2859)
Electricity: measuring and testing
Particle precession resonance
C324S306000, C600S421000
Reexamination Certificate
active
06885192
ABSTRACT:
Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned de superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
REFERENCES:
patent: 4390840 (1983-06-01), Loeffler et al.
patent: 4573015 (1986-02-01), Tanaka et al.
patent: 4851777 (1989-07-01), Macovski
patent: 4906931 (1990-03-01), Sepponen
patent: 4987368 (1991-01-01), Vinegar
patent: 5057776 (1991-10-01), Macovski
patent: 5208533 (1993-05-01), Le Roux
patent: 5254950 (1993-10-01), Fan et al.
patent: 5300887 (1994-04-01), Macovski
patent: 5343147 (1994-08-01), Sager et al.
patent: 5557199 (1996-09-01), Bowman
patent: 5600243 (1997-02-01), Colclough
patent: 5835995 (1998-11-01), Macovski
patent: 6023161 (2000-02-01), Dantsker et al.
patent: 6031373 (2000-02-01), Szeles et al.
patent: 6159444 (2000-12-01), Schlenga et al.
patent: 6544170 (2003-04-01), Toyama et al.
patent: WO 9608234 (1996-03-01), None
patent: WO 0025828 (2000-05-01), None
patent: WO 9737239 (2000-05-01), None
patent: WO 03067267 (2003-08-01), None
M.P. Augustine, D.M. Tonthat, J. Clarke, “SQUID detected NMR and NQR,” Solid State Nuclear Magnetic Resonance, vol. 11 (No. 1-2), pp. 139-156, (Dec. 9, 1998).
M.P. Augustine, A. Wong-Foy, J.L. Yager, M. Tomaselli, A. Pines, D.M. Ton That, J. Clarke, “Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device,” Applied Physics Letters, vol. 72 (No. 15), pp. 1908-1910 (Apr. 13, 1998).
Robert McDermott, Andreas H. Trabesinger, Michael Mueck, Erwin L. Hahn, Alexander Pines and John Clarke, “Liquid State NMR and Scalar Couplings in Microtesla Magnetic Fields,” Science, p. 2247, (Mar. 22, 2002).
M. Muck, M.-O. Andre, J. Clarke, J. Gail, C. Heiden, “Radio-frequency amplifier based on a niobium dc superconducting quantum interference device with microstrip input coupling,” Applied Physics Letters, vol. 75 (No. 22), pp. 2885-2887, (Jun. 1, 1998).
M.-O. Andre, M. A. Muck, J. Clarke, J. Gail, C. Heiden, “Radio-frequency amplifier with tenth-kelvin noise temperature based on a microstrip direct current superconducting quantum interference device,” Applied Physics Letters, vol. 75 (No. 5), pp. 698-700, (Aug. 2, 1999).
M. Muck, M.-O. Andre, J. Clarke, J. Gail, C. Heiden, “Microstrip superconducting quantum interference device radio-frequency amplifier: Tuning and cascading,” Applied Physics Letters, vol. 75 ( No. 22), pp. 3545-3547, (Nov. 29, 1999).
M. Mück and J. Clarke, “The superconducting quantum interference device microstrip amplifier: Computer models,” J. Appl. Phys. , vol. 88 (No. 11), pp. 6910-6918, (Dec. 1, 2000).
M. Mück J.B. Kycia and J. Clarke, “Superconducting Quantum Interference Device as a Near-Quantum-Limited Amplifier at 0.5 GHz,” Appl. Phys. Lett., vol. 78 (No. 7), pp. 967-969, (Feb. 12, 2001).
Michael Mück and John Clarke, “Harmonic Distortion and Intermodulation Products in the Microstrip Amplifier Based on a Superconducting QUantum Interference Device (SQIUD),” Appl. Phys. Lett., vol. 78 (No. 23), pp. 3666-3668 (Jun. 4, 2001).
M. Mück and J. Clarke, “Flux-Bias Stabilization Scheme for a Radio-Frequency Amplifier Based on a SQUID,” Rev. Sci. Instrum., vol. 72 (No. 9), pp. 3691-3693, (Sep. 3, 2001).
E. Dantsker, S. Tanaka, J. Clarke, “High-Tc SQUIDs with slots or holes: low l/f noise in ambient magnetic fields,” Applied Physics Letters, vol. 70 (No. 15), pp. 2037-2039, (Apr.14, 1997).
K.A. Kouznetsov, J. Borgmann, J. Clarke, “High Tc superconducting asymmetric gradiometer for biomagnetic applications,” Review of Scientific Instruments, vol. 71 (No. 7), pp. 2873-2881, (Jul. 3, 2000).
Y.R. Chemla, H. L. Grossman, Y. Poon, R. McDermott, R. Stevens., M.D. Alper, and J. Clarke, “Ultrasensitive magnetic biosensor for homogeneous immunoassay,” PNAS, vol. 97 (no. 26), pp. 14268-14272, (Dec. 19, 2000).
M. Augustine, A. Wong-Foy, D. Tonthat, J. L. Yarger, M. Tomaselli, J. Clarke, A. Pines, “Low Field SQUID Detected MRI of Polarized Noble Gases,” Appl. Phys. Letts. , vol. 72 (No. 15), pp. 1908-1910, (Apr. 13, 1998).
M. Ziegeweid, U. Werner, B. Black, and A. Pines, “SQUID-NQR of 14N,” NQI Newsletter, vol. 1 (No. 3), pp. 24-25, (Mar. 4, 1994).
Ulrike Werner-Zwanziger, Marcia Zeigeweid, Bruce Black, and Alexander Pines, “Nitrogen-14 SQUID NQR of L-Ala-L-His and of Serine,” Zeitschrift fur Naturforschung, pp. 1188-1192, (Aug. 2, 1994).
James P. Yesinowski, Michael L. Buess, Allen N. Garroway, Marcia Zeigeweid, and Alexander Pines, “Detection of 14N and 35Cl in Cocaine Base and Hydrochloride Using NQR, NMR and SQIUD Techniques,” Analytical Chemistry, vol. 67 (No. 13), pp. 2256-2263, (Jul. 1, 1995).
Dinh M. Ton That, M. Zeigeweid, Y.-Q. Song, E.J. Munson, S. Appelt, A. Pines, and John Clarke, “SQUID Detected NMR of Laser-Polarized Xenon at 4.2K and at Frequencies Down to 200Hz,,” Chem. Phys. Lett., pp. 245-249, (Jun. 27, 1997).
Klaus Schlenga, Robert F. McDermott, John Clarke, Ricardo E. De Souza, Annjoe Wong-Foy, and Alex Pines, “High-Tc SQUIDs for low-field NMR and MRI of Room Temperature Samples,” IEEE Trans. on Appl. Supercond. , p. 4424, (Dec. 8, 2003).
R. E. De Souza, K. Schlenga, A. Wong-Foy, R. McDermott, A. Pines and John Clarke, “NMR and MRI obtained with high transition temperature DC SQUIDs,” J. Braz. Chem. Soc., vol. 10 (No. 4), pp. 307-312, (Jan. 3, 1999).
R. McDermott, A. H. Trabesinger, M. Mueck, E. L. Hahn, A. Pines, J. Clarke, “Liquid-State NMR and Scalar Couplings in Microtesla Magnetic Fields,” Science, pp. 2247-2249, (Mar. 22, 2002).
K. Schlenga, R. McDermott, John Clarke, R. E. De Souza, A. Wong-Foy, and A. Pines, “Low-field magnetic resonance imaging with a high-Tc de superconducting quantum interference device,” Appl. Phys. Letters, vol. 75 (No. 23), pp. 3695-3697, (Dec. 6, 1999)
Aviva Goldman, “Scientists Edge Closer to Producing Portable Medical Imaging Machine,” The Daily Californian, (Apr. 4, 2002).
Robert F. Service, “Whisper of Magnetism Tells Molecules Apart,” Science, p. 2195, (Mar. 22, 2002).
R. McDermott et al., “Microtesla Nuclear Magnetic Resonance (NMR),” Science, p. 2247, (Jan. 1, 2002).
Paul Callaghan, “Nuclear Magnetic Resonance delights continue,” Physics World, (Apr. 1, 2002).
Robert Francis McDermott, “SQUID-Detected NMR and MRI in Microtesla Magnetic Fields,” Doctoral Dissertation in Physics, University of California, Berkeley (Berkeley, CA), pp. 1-138, (Dec. 1, 2002).
A. Bloom et al., “Measurement of Nuclear Induction Relaxation Times in Week Magnetic Fields”, Phys.Rev. vol. 93, p. 941 (1954).
M. Packard, et al. “Free Nuclear Induction in the Earth's Magnetic Field,” Phys. Rev., vol. 93, p. 941, 1954.
G. Bene, “Nuclear Magnetism of Liquid Systems in the Earth Field Range,” Physics Reports, vol. 58, No. 4, 1980, pp. 213-267, North-Holland Publishing Company, Amsterdam, Netherlands.
G. Bene, et al. “In situ identification of human physiological fluids by nuclear magnetism in the earth's field,” Phil. Trans. R. Soc. Lond., B289, pp. 501-502, 1980.
W. Bergmann, “Proposal for an Improvement of NMR-Imaging by Low-Temperature-SQUID-Detection Towards Molecular Kinetic Measurements Localized to a Small Sub-Region of the Sa
Clarke John
McDermott Robert
Pines Alexander
Trabesinger Andreas Heinz
Arana Louis
Milner Joseph R.
Sartorio Henry P.
The Regents of the University of California
LandOfFree
SQUID detected NMR and MRI at ultralow fields does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with SQUID detected NMR and MRI at ultralow fields, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and SQUID detected NMR and MRI at ultralow fields will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3394832