Squaraine based dyes and process for preparation thereof

Organic compounds -- part of the class 532-570 series – Organic compounds – Amino nitrogen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C564S427000, C564S468000, C546S102000, C546S104000

Reexamination Certificate

active

06417402

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to novel squaraine based dyes. More particularly, the present invention relates to squaraine based dyes with terminal aminoanthracene or acridinium units with absorption maximum above 700 nm of the formula 1 (1a, 1b, 1c)
The present invention also relates to a process for the preparation of novel squaraine based dyes.
BACKGROUND OF THE INVENTION
Squaraine dyes belong to a class of compound formed by the condensation reaction of different nucleophiles such as aniline or pyrrole with squaraine acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) Due to their unique properties, squaraine dyes are used in layered photo-responsive imaging, devices to extend the response capability of such devices to visible and infrared illumination These photo-responsive devices can therefore be utilised, for example, in conventional electrophotographic copiers as well as laser printers. These photoresponsive devices may comprise single or multilayered members containing photoconductive materials comprising squaraine compositions in a photogenic layer.
Photoconductive imaging members containing certain squaraine compositions are known. Also known are layered photoresponsive devices containing photogenerating layers and transport layers as described for example, in U.S. Pat. Nos. 4,123,270, 4,353,971, 3,838,095 and 3,824,099. Examples of photogenerating layer compositions disclosed in U.S. Pat. No. 4,123,270 include 2,4-bis(2-methyl-4-dimethylaminophenyl)-1,3-cyclobutadiene diylium-1,3-diolate, 2-4-bis-(2-hydroxy-4-dimethylaminophenyl)-1,3-cyclobutadine-diylium-1,3, diolate, and 2,4-bis-(p-dimetliylaminophenyl)1-3-cyclobutadine-diylium-1,3-diolate. Other patents disclosing photoconductive devices with squaraines are U.S. Pat. No. 6,042,980, U.S. Pat. No. 6,040,098, U.S. Pat. No. 5,342,719, U.S. Pat. No. 4,471,041, U.S. Pat. No. 4,486,520, U.S. Pat. No. 4,508,803, U.S. Pat. No. 4,507,480, U.S. Pat. No. 4,552,822, U.S. Pat. No. 4,390,610, U.S. Pat. No. 4,353,971 and U.S. Pat. No. 4,391,388.
Infrared absorbing dyes with high extinction coefficients are also useful for generating heat in the medium. In such a process exposure of the medium containing the dye to infrared actinic radiation of a frequency absorbed by the dye, results in generation of heat within parts of the medium exposed to the radiation. Materials, which undergo localized changes of state when, exposed to radiation of high energy density, e.g. laser light can be used in optical recording media. The thermally induced changes of state are associated with changes in the optical properties and are utilized for information and data recording. Use of squaraine dyes for such applications is described in U.S. Pat. No. 4,830,951. The medium may also comprise a thermally sensitive material capable of undergoing a colour change upon exposure to heat. Use of squaraine dyes for such applications is described in U.S. Pat. No. 4,623,896, U.S. Pat. No. 4,663,518, U.S. Pat. No. 4,720,449, U.S. Pat. No. 4,960,901 and U.S. Pat. No. 5,153,169.
Many of the known squaraine dyes are fluorescent compounds emitting light in the visible and near-infrared region. Consequently another use proposed for squaraine dyes is in the area of assays. Fluorescent compounds have achieved wide application in assays because of their ability to emit light upon excitation with light with energy within certain energy ranges. More specifically there is considerable interest in fluorescent dyes emitting in the near-infrared region. Such fluorescers have found employment as labels in chemical and biochemical processes. Fluorescent labels find applications in immunoassays, involving specific binding, pairs, such as ligands and receptors, for example, antigens and antibodies. Another use of fluorescent compounds is to incorporate such compounds into a cell wall or liposome. The cell or the liposome with the fluorescent compound incorporated therein can also be employed in assays. For example, dyes incorporated into cell membranes are usefull in the area of blood typing where a chance in fluorescence because of agglutination of cells is determined. Liposomes containing fluorescent dyes also find application in immunoassays. Furthermore such fluorescent compounds should be preferably soluble in aqueous medium or be at least water compatible.
Laser beams find use in the assay area as means for irradiating a fluorescent compound. In the filed of assays it is important to avoid background signals produced in relation to the amount of the analyte, contributed by materials other than the analyte. For example serum or plasma from a patient is often used to conduct the assay. Serum is itself fluorescent, however the materials in the serum or plasma that are fluorescent normally absorb light at wavelengths below 600 nm. Therefore it is desirable that the dyes employed in fluorescence assays possess absorption maximum greater than 600 nm, since the signal to noise ratio improves with increasing wavelength of absorption and emission of the dye. A major bottleneck in the complete utilization of near infrared absorbing dyes for such applications is that dyes absorbing in this region have low fluorescence quantum yields. Squaraine dyes synthesized sing aromatic heterocyclic for use in such applications have been described in U.S. Pat. No. 5,310,922; U.S. Pat. No. 5,329,019, and U.S. Pat. No. 5,416,214. However, the squaraine dyes described in these patents possess absorption and emission maxima below 700 nm.
Furthermore, several patents disclose processes for preparing squaraine compositions. For example, U.S. Pat. No. 4,5484,220 illustrates a squaraine forming process by the reaction of squaric acid, and an aromatic aniline in the presence of an aliphatic amine. In addition, a process for the preparation of squaraines by the reaction of an alkyl squarate, and an aniline derivative in the prescience of aliphatic alcohol, and an optional acid catalyst is described in U.S. Pat. No. 4,524,219. U.S. Pat. No. 4,524,218 discloses a process for the preparation of squaraines by the reaction of squaric acid with an aromatic amine, and a composition selected from the group consisting of phenols and phenol squaraines, which reaction is accomplished in the presence of an aliphatic alcohol, squaraines, which reaction is accomplished in the presence of an aliphatic alcohol, and an optional azeotropic catalyst. Other processes for preparing squaraines are illustrated in U.S. Pat. No. 4,525,592, which describes the reaction of dialkyl squarate, and an aniline derivative in the presence of an aliphatic alcohol and an acid catalyst. A method for synthesis of squaraines and intermediates for the synthesis of these compounds is described in U.S. Pat. No. 5,919,950. Process for preparation of squarylium dyes is also described in U.S. Pat. No. 5,656,750 and a method for making water soluble squaraine dyes is described in U.S. Pat. No. 5,625,062.
Novel unsymmetrical squaraines and methods for their preparation have been described in U.S. Pat. No. 4,521,621 and U.S. Pat. No. 5,030,537. Although the above squaraines, and processes thereof are suitable for their intended purposes, there continues to be a need for other squaraine dyes with strong absorption and emission characteristics beyond the 700 nm region. More specifically with regard to imagine devices, there remains a need for stable imaging dyes with certain stable physical and electrical characteristics, with improved sensitivity in the >700 nm region. Enabling the use of such dyes in different imaging and printing processes, including processes wherein diode lasers are used. New infrared dyes are needed which absorb at specific wavelength for such applications. Use of naptholactam squaric acid dyes which belong to a class of Squaraine dyes that contain hetrocyclic enamine type terminal groups in optical recording materials is described in U.S. Pat. No. 4,830,951. Squaraine dyes possessing tertiary arylamine end groups have the potential for better stability than those with the heterocyclic enamine type end groups.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Squaraine based dyes and process for preparation thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Squaraine based dyes and process for preparation thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Squaraine based dyes and process for preparation thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2909615

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.