Spring space shoe

Boots – shoes – and leggings – Soles – Spring heel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C036S114000, C036S102000, C036S031000

Reexamination Certificate

active

06684531

ABSTRACT:

BACKGROUND
This invention is a spring shoe called herein a space shoe. Its sole is a structure constrained to compress without tilting; this structure is called herein the p-diamond. This optimally simple, anti-tilt, compressible structure comprises overlapping diamond and parallelogram linkages which constrain an upper plate from tilting as it moves vertically up and down with respect to a lower plate. The p-diamond has many applications where non-tilt spring systems are required, and it is an inexpensive alternative to telescopically guided spring systems. P-diamond applications include, but are not limited to, the space shoe, which also has a push-off means to allow natural foot action.
The first embodiment of the space shoe is called herein a space shoe because most of the skeletal sole is free space rather than a solid, foam-filled structure. The springs of the space shoe act directly between the ground plate and the shoe plate; that is, these springs are located at shoe or sole level. The second embodiment of the invention is called a bow shoe; its bow spring is located at the shin level, or above, to minimize the device weight at foot level.
The space shoe provides for the following improvements (referred to as S1-S3 with “S” for space shoe). (S1) It has an improved mechanism to capture both heel and toe impact energy and return all impact energy through the toe during the latter part of toe-off. (S2) It provides for optimal stability by constraining an upper shoe plate to not tilt with respect to a lower ground plate—via a linkage called herein a p-diamond linkage. Improvement (S2) is referred to herein as sole tilting. Improvement (S3) is that a natural running action is allowed—where this running action comprises both a natural roll-over from heel to toe and a push-off—with the wearer's metatarsal joint freely flexing and the heel lifting into the air during toe-off.
Seven categories of prior shoe art with springs or relevant features are listed below. Examples of each category will be given, along with limitations overcome by the space shoe improvements which improvements will be referred to by the numbers S1 to S3 mentioned above. The first category has multiple springs located throughout the sole or only in the heel. Examples include U.S. Pat. No. 5,621,984 of Hsieh and U.S. Pat. No. 5,337,492 of Anderie. Space-shoe improvements S1, S2, and S3 apply to this category which prior art notably permits sole tilting (S3) and dissipates heel impact energy in mid-stance (S1). With regard to improvement (S1), as the wearer's heel lifts to push-off, the prior-art heel springs release their energy prematurely, the wearer's knee bends and his ankle dorsi-flexes during which time the heel impact energy is largely dissipated. In fact, for this heel impact energy to efficiently propel the wearer up and forward, it must act through the wearer's toe during the latter part of toe-off.
The second category of “springs in soles” prior art has a means to captures all of the heel impact energy for energy return at toe-off. An example is U.S. Pat. No. 4,936,03 of Rennex. Improvements (S2 & S3) apply, and the space-shoe mechanism to achieve improvement (S1) is considerably simpler and cheaper. The third category of “springs in soles” prior art has a linkage to constrain a compressible sole as a spring stores impact energy. Examples include U.S. Pat. No. 4,534,124 of Schnell, U.S. Pat. No. 5,896,679 of Baldwin, U.S. Pat. No. 5,701,685 of Pezza. Space-shoe improvements (S2 and S3) apply to Schnell and Pezza. Improvements (S1, S2, and S3) apply to Baldwin.
A third category of relevant prior art does not actually have springs in the soles. Rather, these patents do provide means for the wearer to flex their metatarsal joint and push off their toe. U.S. Pat. No. 4,400,894 of Erlich, U.S. Pat. No. 5,926,975 of Goodman, and U.S. Pat. No. 5,384,973 of Lyden all feature a narrowing of a conventional, solid sole under the metatarsal joint, and there are many other examples of this solution. U.S. Pat. No. 6,079,126 of Olszewski uses the just-mentioned “narrowing” solution as well as another solution where a conventional, solid sole is split and the upper section lifts with the wearer's heel. A U.S. Pat. No. 5,282,325 of Beyl also teaches a split sole with a torsion spring in the heel.
The current patent also provides for the wearer to flex his metatarsal joint and push off his toe—in a variety of ways. However, the sole structure of the space shoe is distinct—in that it comprises a linkage between plates, instead of the conventional, solid sole of the just-mentioned prior art. That is, even though the “toe-flex” function is the same, the structure and designs of the current patent are quite different and novel, and the general idea of a means for toe-flexing is old in the art.
With reference to the second embodiment of the invention, namely the bow shoe, the above improvements (S1, S2, and S3) still apply—along with some additional improvements labeled “B” for bow shoe. (B1) The bow shoe minimizes weight at the foot for improved energy efficiency. (B2) It uses bow springs to achieve a constant force curve. (B3) It permits optimally few, long, and light bow springs. (B4) It provides for optimal stability by minimizing the unweighted sole thickness.
The fourth category of “springs in soles” prior art has a spring and suspension mechanism in the heel. An example is U.S. Pat. No. 6,115,942 of Paradis with a bow spring. Improvements (S1, S2, B3, and B4) apply to this patent. Another example is U.S. Pat. No. 6,131,309 of Walsh with improvements (S1-S3 and B1, B3 and B4) applicable. The fifth category has a curved ground support hingeably connected in front and in back to the shoe and a single spring in the center. An example is UK Patent # GB2,179,235 of Waldron. Improvements (S1-S3 and B1-B4) apply to this category. The sixth category of has a linkage to constrain a compressible sole as a spring stores impact energy. Examples include U.S. Pat. No. 4,534,124 of Schnell, U.S. Pat. No. 5,896,679 of Baldwin, U.S. Pat. No. 5,701,685 of Pezza. Improvements (S2, S3 and B1-B4) apply to Schnell and Pezza. Improvements (S1-S3 and B1-B4) apply to Baldwin. The seventh and final category uses a linkage to connect the toe of a shoe to the mid-section of a bow spring, the bottom of which contacts the ground. A commercial product of ALANSportartikel, address: GmbH Grafratherstrasse 53, 82288 Kottgeisering/Germany, marketed under the brand name of “Powerskip” and referenced by their website, http://www.powerskip.de, is the only example of this category. Improvement (S3) applies because the force curve is not as constant as for an axially-loaded bow spring, and improvements B3 and B4 apply. The most notable improvement is (B2) because the foot of the wearer of “Powerskip” is a substantial distance above the ground even when the bow spring is fully compressed.
SUMMARY
With reference to the space shoe, in both space shoe and bow-shoe embodiments, the key feature is a compressible sole comprising an eight-bar linkage (called herein a p-diamond sole) which constrains the upper shoe plate not to tilt as it moves vertically up and down with respect to the ground plate. Another feature is a push-off means which allows the wearer to freely push off her toe. Another feature is that a minimal number of springs and stops (even one) of any kind can be used (without need of a spring guide). In one embodiment, the spring system assists heel lift in the latter part of toe-off, thereby reducing the muscle energy expenditure of the calf muscles. These springs and stops can easily be replaced to fit the performance requirements of an individual for walking and running. Another feature is a heel hugger mechanism which ensures that the entire rear section of the space shoe “hugs” the heel of the wears during swing phase. Another feature is a back-flexing outrigger, called herein a “flex-rigger,” to prevent sprained ankles; the flex-rigger can be used not only with the space shoes, but also as a retrofit or an int

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spring space shoe does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spring space shoe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spring space shoe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3311740

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.