Communications: directive radio wave systems and devices (e.g. – Base band system
Reexamination Certificate
2002-10-23
2004-10-05
Sotomayor, John B. (Department: 3662)
Communications: directive radio wave systems and devices (e.g.,
Base band system
C342S070000, C342S108000, C342S115000, C342S145000
Reexamination Certificate
active
06801153
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to radar systems in general, and in particular to such systems utilizing spread spectrum (SS) and pseudo-noise (PN), maximal length sequence technologies. More particularly still, it is directed to a radar system where compensation (partial cancellation) of the leaked transmit signal is accomplished at baseband of the PN code sequence. As such, the radar system is particularly useful in police radar gun, traffic monitoring and automotive collision avoidance applications, where the use of a single antenna for both transmit and receive is desirable.
2. Prior Art of the Invention
U.S. Pat. No. 5,657,021 (commonly owned by the present assignee) for a SYSTEM AND METHOD FOR RADAR VISION FOR VEHICLES IN TRAFFIC, issued Aug. 12, 1997 discloses interference-free radar systems utilizing PN waveforms for sequential transmission by radar, wherein the PN waveform is tapped and adjustably attenuated to cancel leakage within the system prior to correlation of the received echo.
A paper titled A COLLISION AVOIDANCE RADAR USING SIX-PORT PHASE/FREQUENCY DISCRIMINATOR (SPFD) by Ji LI et al published May 23, 1994 in 1994 IEEE MTT-S Digest, pp. 1553-1556, proposed a novel technique for collision avoidance radar used in automobiles, in which a new six-port microwave/millimeter wave digital phase/frequency discriminator (SPFD) is used to measure Doppler frequency shifts. Both relative speed and moving direction of the target are readily obtained. Ranging is implemented by the measurement of phase difference at two adjacent frequencies.
In this paper by LI et al state:
“In CW type radars, one of the most serious problems is to achieve sufficient isolation between transmission and reception. To prevent the receiver from saturation, separate transmitting and receiving antennas are often used. This results in unwanted larger volume and higher cost. Some other solutions such as Reflected Power Canceller (RPC) [6] are proposed and implemented, however the cost and complexity are still high. In contrast, by using new SPFD it is very easy to integrate a RPC into the sensor at the expense of only a vector modulator (phase shifter and attenuator). The single antenna scheme is shown in FIG.
3
. In the six-port PFD, the leakage of the transmitted signal yields a deviation of the detected vector from the origin. A feedback algorithm can be adopted to control the loop to realign the vector to the origin, such that the leakage power is canceled out”.
In UK patent application GB 2,268,350, published May 1, 1994, for HIGH RANGE RESOLUTION RADAR a phase-coded signal is transmitted by one antenna and the reflections received by another. Both the outward and return signals are mixed in a quadrature mixer to produce a baseband replica of the coded signals, which are then filtered and, amplified before being applied to a correlator. Internal signal leakage in this system does not appear to be a problem.
In U.S. Pat. No. 5,134,411, issued Jul. 28, 1992, a NEAR RANGE OBSTACLE DETECTION AND RANGING AID apparatus is disclosed. Range measurement signals are produced by means of phase comparison of signals in two paths. The subject of “Leakage Correction” is discussed as follows:
“In a practical system one or more leakage paths may exists between the RF and LO ports of the mixer. When measuring a target with a weak echo signal, a stronger leakage signal may cause significant errors. Since the transformation 13 has a commutative property, we can generate a corrected signal u
corr
(i)=u(i)−u
cal
(i), which is to be used in equation 13. The signal u
ca
(i) is measured when no targets are present. Alternatively, we can measure u
ca
(i) even in the presence of targets, if both antennas are replaced by a matched load. In this case, however, the external leakage between the antennas cannot be corrected and therefore will limit the useful dynamic range of the target echo”.
The issue of leakage in the circulator in FIG. 7, where a single antenna is used, is not addressed.
In a paper by Yukiko HANADA et al titled VEHICULAR SPREAD SPECTRUM RADAR FOR MULTIPLE TARGETS DETECTION USING MULTI-BEAM ANTENNA (IEIC TRANS. FUNDAMENTALS, VOL. E-80, NO. 12 DECEMBER 1997), the author propose and investigate a vehicular radar system that can measure the distance to, the relative speed of and the direction of arrival (DOA) of the reflected waves from multiple targets or vehicles using the direct-sequence spread spectrum (DS-SS) technique. In particular, they propose a DOA estimation scheme using a multi-beam antenna. In order to show that the proposed system can accurately measure the above-mentioned quantities, the performance is evaluated numerically in a multi-path environment. Moreover, the optimal multi-beam pattern is derived to minimize error probability of DOA estimation. The author state that they use several antennas which form sharp multiple beams, which can be implemented by using several types of antennas such as phased array antenna and a combination of directional antennas.
In a paper titled 76 GHZ AUTOMOTIVE MILLIMETER-WAVE RADAR USING SPREAD SPECTRUM TECHNIQUE by Hiroshi ENDO et al, published in SAE TECHNICAL PAPER SERIES 1999-0102923, the author state:
“In SS radar, transmission signals are modulated using PN codes, and then transmitted through the transmission antenna. The signal reflected from a target located ahead of the radar equipped vehicle has a time delay that corresponds with the two-way range delay, the Doppler shift corresponds with the range rate between the radar equipped vehicle and a target ahead; and that signal that is received by the reception antenna. The PN sequences have an auto-correlation function as shown in FIG. 1 [2]. Utilizing these characteristics, SS radar can measure range from the phase difference of PN sequences. The range rate can be measured by frequency analysis when the correlation peak is detected. In this method, accurate raging and multiple target separation are possible due to the detection method using the auto-correlation characteristics of PN sequences. Moreover, SS modulation has excellent interference capabilities since the demodulation process using PN sequence spreads undesired signals or interference in the channel and thus suppresses those signals”.
Finally, in a paper titled SYSTEM ASPETS AND DESIGN OF AN AUTOMOTIVE COLLISION WARNING PN CODE RADAR USING WAVEFRONT RECONSTRUCTION By Jürgen DETLEFSON et al, published in 1992 IEEE MTT-S Digest, pp.625-628, the author disclose a 61 GHZ radar system with the following parameters:
Carrier frequency
61
GHz
subcarrier frequency
1.2
GHz
range resolution
0.75
m
unambiguous range
767
m
maximum range
150
m
Modulation
BPSK
Code
maximal length PN sequence
code length
1023
chips
Chiprate
200
Mchips/s
code repetition frequency
196
kHz
angular resolution
wavefront reconstruction by FFT
angular resolution cells
4/8
angular resolution cell width
3°/1.5°
field of view
12° × 150
m
rf-power
1.6
mW
maximum Doppler frequency
+/−20
KHz
SUMMARY OF THE INVENTON
The radar systems of the present invention have some of the features of prior art systems. In a preferred implementation of the present invention, the radar is based on a CW carrier phase modulated with a maximal length PN code sequence providing a low power spread spectrum signal. Target range is determined by correlating the radar return signal with a delayed copy of the transmitted PN code.
An important feature of the present invention is signal leakage compensation by means of signal feedthrough cancellation techniques. Such compensation, while generally useful, is particularly desirable for compact radar systems, whether for law enforcement applications (police radar gun) or for automotive and similar applications. However, while the system of the present invention is particularly suitable for single antenna radars, it is still applicable where separate transmit and receive antennas are used. In such applications, it would permit improved performanc
Kwong Michael K. C.
Rauch Sol
Sotomayor John B.
Spectrum Target Detection, Inc.
Vigil Thomas R.
LandOfFree
Spread spectrum radar with leak compensation at baseband does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Spread spectrum radar with leak compensation at baseband, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spread spectrum radar with leak compensation at baseband will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3314937