Spread spectrum pulse position modulation communication system

Pulse or digital communications – Spread spectrum – Direct sequence

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S239000, C370S213000, C329S313000

Reexamination Certificate

active

06205169

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a spread spectrum pulse position modulation communication system (for example, for use in indoor radio communication, radio LAN, radio high-speed data communication, etc.).
2. Discussion of the Background
The principle of spread spectrum pulse position modulation is shown in an English paper,
Spread Spectrum Pulse Position Modulation
written by Isao Okazaki and Takaaki Hasegawa in IEICE TRANS. COMMUN., VOL. E76-B., NO. 8, August, 1993, pages 929-940. The teaching of the paper is hereby incorporated by reference.
With regard to spread spectrum pulse position modulation, Isao Okazaki, Takaaki Hasegawa and Saitama University wrote a Japanese paper entitled
A Study on Multiplexing of Spread-Spectrum Pulse Position Modulation
in SST91-18, pages 17-22.
Japanese Laid-Open Patent Application No. 8-79133 and the corresponding U.S. Pat. No. 5,596,601 (hereinafter “the ′601 patent”) of AT & T CORP disclose two-signal multiplexing by quadrature modulation.
The inventor of this application is the same as the inventor of U.S. application Ser. No. 08/862,647, now U.S. Pat. No. 5,923,701, (hereinafter “the ′647 application”) filed on May 23, 1997 which discloses two-signal multiplexing as a result of adding together a spread spectrum pulse position modulation signal with a pseudonoise code and a spread spectrum pulse position modulation signal with the inverted pseudonoise code.
A spread spectrum pulse position modulation communication system in the related art will now be described with reference to
FIGS. 1A
,
1
B,
1
C and
1
D.
FIG. 1A
shows a modulated signal in a case of simple pulse position modulation and shows an example where 4 slots are provided for each frame. For an M value data symbol to be transmitted, one of M slots is selected and a pulse is transmitted. Thus, a pulse position modulation is performed.
FIG. 1B
shows a modulated signal of the spread spectrum pulse position modulation communication system which is a system resulting from combining a spread spectrum modulation with the system shown in FIG.
1
A. As described in Japanese Laid-Open Patent Application No. 4-137835, in this system, instead of one slot width of a pulse in the pulse position modulation in the related art, a code length L of a pseudonoise code is inserted into L slots starting from a selected slot. Thus, spread modulation is performed. In order to prevent overlapping of signals between adjacent frames, a frame length is longer by more than L-1 slots as compared to the pulse position modulation. Accordingly, the number of slots for each frame is M+L−1+j. When j≧0, signals are not overlapped. Whenj<0, some overlapping of signals occurs.
In the example of
FIG. 1B
, one of the M slots starting from the top to be transmitted is selected to correspond to data obtained from differential encoding. The pseudonoise code is inserted into the L slots starting from the selected slot. Thus, spread modulation is performed. In this example,
FIG. 1B
shows a transmission signal in a case of M=4, L=7 and j=0, and shows a modulated signal in a case where data obtained from differential encoding to be transmitted is 0, 1, 3, etc.
The signal shown in
FIG. 1B
is input to a matched filter which matches the code the same as the pseudonoise code used in the spread modulation. As a result, a pulse position modulated signal shown in
FIG. 1C
is reproduced. This is because the autocorrelation characteristics of the pseudonoise code used in the spread modulation are such that, as shown in
FIG. 1D
, a sharp peak occurs only when a time difference between codes is within one slot period. Then, by obtaining the position of the slot position of the reproduced pulse in each frame, the original data can be reproduced.
FIGS. 2 and 3
show circuit arrangements of a transmitter and a receiver which concretely realize the above-described processes. In the transmitter shown in
FIG. 2
, a clock signal generator
1
drives (1) a pseudonoise code generator code
9
and (2) a counter
2
(which returns to zero each time (M+L−1+j) pulses are counted). Serial data to be transmitted is converted into a parallel data through a serial-parallel converter
5
. Parallel data of one frame before is stored in a register
8
, the output value of the register
8
is added to the parallel data from the serial-parallel converter
5
through an adder
6
. The output of the adder
6
is fed back to the register
8
. Thus, differential encoding is performed. The output value of the register
8
is compared with the value of the counter
2
by a comparator
4
. When the values agree, the comparator
4
sends a trigger pulse signal to the pseudonoise code generator
9
. Thereby, the pseudonoise code generator
9
generates one period of a pseudonoise code. A detector
3
which detects that the output of the counter
2
becomes a predetermined value generates a frame clock signal. The register
8
operates in synchronization with the frame clock signal. Further, the frequency of this clock signal is multiplied by a PLL 7 or the like, and the resulting clock signal is used in the serial-parallel conversion. The signal from the pseudonoise code generator
9
is multiplied by the signal from an oscillator
11
through a multiplier
10
, and thus, is converted into a high-frequency signal. The high-frequency signal passes through a filter
12
and is transmitted as a radio signal through an antenna.
FIG. 3
illustrates the reception portion. In the reception portion, the signal from the transmission portion is received by an antenna and is amplified by an amplifier
20
. Then, the thus-obtained signal is multiplied by a local oscillation signal from an oscillator
22
through a multiplier
21
. Thereby, the signal is converted into an intermediate frequency signal. This signal passes through a filter
23
and is amplified by a gain controlled amplifier
24
. Then, the signal passes through a matched filter
25
which uses the same pseudonoise code as that of the transmission portion. Thereby, inverse spreading is performed and a pulse position modulated signal is reproduced. Detection is performed by a detector
26
at the output of the filter
25
, and the signal is converted into a baseband pulse-position modulated signal. Pulse intervals of this signal are measured by a following pulse interval measuring circuit
27
. Transmitted data is reproduced from the measured value, and finally, the data is converted into serial data by a parallel-serial converter
28
. Thus, the originally transmitted signal is reproduced. In the above-described system in the related art, only the amplitudes of matched pulses are seen.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a spread spectrum pulse position modulation communication system in which the method of the ′601 patent using the two-signal multiplexing by quadrature modulation and the method of the ′647 patent are combined. Thereby, 4-signal multiplexing can be achieved and high-speed communication can be performed. As a result, it is possible to apply this method to a radio LAN, for example.
The spread spectrum pulse position modulation communication system, according to the present invention, uses a period L of a pseudonoise code. The transmission data includes four data symbols M
1
, M
2
, M
3
and M
4
, each of which has a maximum value of M. Each frame includes (M+L−1+j) slots, and the slot rate of each frame is the same as the chip rate of each pseudonoise codes.
The data symbol M
1
is differentially encoded to obtain a first value. One slot is then selected from consecutive slots in a frame for the first value. The pseudonoise code is inserted into the L slots which start from the selected slot. The data symbol M
2
is similarly differentially encoded to obtain a second value. One slot is selected from consecutive slots in a frame for the second value. The inverted code is inserted into the L slo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spread spectrum pulse position modulation communication system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spread spectrum pulse position modulation communication system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spread spectrum pulse position modulation communication system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2515586

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.