Sprayer nozzle with closing membrane

Dispensing – Outlet element operated by pressure of contents – Spring form – resilient or compressible flow controller or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S490000, C222S189060, C222S189090, C222S189110, C222S321600, C222S380000, C222S402120, C239S533130, C239S570000, C239S571000, C239S575000, C239S583000, C239S602000

Reexamination Certificate

active

06234365

ABSTRACT:

The present invention relates to an endpiece for dispensing liquid pharmaceutical substances.
Traditional endpieces, such as those for nasal application, generally comprise a cylindro-conical body designed to be mounted via a coupling base on a tank that can be put under pressure.
An axial ejection duct containing a central core is formed inside the body and it communicates firstly at its top end with a spray valve or nozzle, and secondly at its bottom end with the tank via means for pressurizing and/or measuring out the substance.
Such endpieces are described, for example, in WO 94/29187 in which the ejection duct is closed by a wall that has a central orifice co-operating in leakproof manner with a stud and connected to the endpiece by deformable link elements enabling it to move axially.
However, with said endpieces, the substance is not provided with bacteriological protection in reliable manner.
The spray valve or nozzle does not, on its own, constitute a mechanical barrier that is sufficiently effective to limit in significant manner, or a fortiori to eliminate, any risk of the substance becoming contaminated.
Although protection can be improved by incorporating antibacterial agents or bactericides in the material from which endpieces are made, the search for a fully satisfactory solution further includes, above all, developing mechanical means capable of providing a high level of mechanical isolation for the ejection duct so as to obtain better confinement of the substance inside the tank.
Furthermore, when operation of the pressurization means requires pressures to be brought back into equilibrium between the tank and the outside, the air intake must not constitute a source of pollution or deterioration of the substance, and it must compromise neither the sealing of the endpiece nor the quality of dispensing or dose-measurement.
Finally, in general, conventional endpieces are not suitable for being sterilized by all methods of sterilization.
An object of the present invention is to resolve those technical problems in satisfactory manner.
According to the invention, this object is achieved by means of an endpiece for dispensing and/or measuring out liquid pharmaceutical substances, the endpiece comprising a cylindro-conical body fitted with a bottom base for receiving thrust and for coupling to a tank capable of being put under pressure, and an axial ejection duct containing a central core and communicating firstly at its top end with a spray nozzle, and secondly at its bottom end with the tank,
the endpiece being characterized in that the top end of the ejection duct is closed in temporary and leakproof manner by a wall which is secured to the top portion of said body and which extends perpendicularly to said duct, the wall being movable in reversible manner under drive from the substance, said wall being provided with a central orifice capable of being closed in the closed position by a stud secured to the core being forced thereagainst, the periphery of said wall being attached to said body via an elastically deformable link element enabling said wall to move in axial translation under pressure.
In a particular embodiment, the top portion of said body is formed by an independent cap carrying said wall and fitted in leakproof manner to the top of a coaxial sleeve secured to the bottom portion of said body and defining at least part of the top portion of the ejection duct.
In a variant, said wall is made as a single piece together with the cap out of an elastomer material or out of an elastomer-and-thermoplastic material.
In a particular variant, said cap is locked onto said sleeve by means of snap-fastening members.
Preferably, said sleeve is connected to the bottom portion of said body via a transverse shoulder forming an abutment for the bottom edge of said cap.
In another embodiment, the top and bottom portions of said body are formed as a single piece by dual injection of an elastomer-and-thermoplastic material and of a thermoplastic material.
In another variant, said spray nozzle is formed beneath said wall by intermediate spaces situated radially outside the periphery of said wall between the inner faces of the top portion of said body and the outer envelope of said core.
According to an advantageous characteristic, said core possesses an enlarged head that is substantially cylindrical.
In another variant, the central orifice of said wall is formed by a cylindrical bore, while said stud is substantially frustoconical in profile.
Preferably, the outside face of said wall is set back from the top rim of said body so as to define a cup.
In yet another variant, the bottom base is extended downwards by a skirt designed to be engaged with radial clamping in the neck of the tank.
In yet another embodiment, more particularly applicable to an atmospheric method of dispensing, said wall is made in the form of a membrane having permeability that enables air to filter through it.
Preferably, said wall is made of silicone.
In a particular variant, said core in the closed position defines a prestressed state of the link element.
The endpiece of the invention provides reinforced sealing for the ejection duct, thereby preventing any penetration of bacteria or other biological contaminants when it is in the closed position.
Under such circumstances, and also using a bactericidal agent acting merely by contact with the substance and without migration into the substance, it is possible, after the movable wall has returned to the closed position, to perform in situ antiseptic treatment of the fraction of the substance that remains confined inside the nozzle and in the ejection duct.
Similarly, this antiseptic treatment also applies to the outside surfaces of the endpiece which are the most exposed to contaminating media.
Given the absence of any dead volume at the moving wall and the very small volumes of the intermediate spaces inside the endpiece, the efficiency of the bactericidal agent is excellent and leads to germs being rendered completely harmless.
When the pressurization means used operate with air intake, the volume of air that is sucked in is filtered through the movable wall, thereby eliminating any risk of pollution and/or of contamination.
In addition, the endpiece as a whole can be sterilized by any means, for example beta and gamma ionizing radiation, and heat treatment at temperatures of at least 120° C.
Furthermore, spraying is of very good quality, and this continues in constant and durable manner, because the wall as a whole moves uniformly in axial translation without any interfering shifts or deformation.
The endpiece of the invention can be used advantageously for dispensing and measuring out pharmaceutical substances for ophthalmological or nasal (ENT) application.


REFERENCES:
patent: 5154325 (1992-10-01), Ryder et al.
patent: 5181658 (1993-01-01), Behar
patent: 5195665 (1993-03-01), Lina
patent: 5203840 (1993-04-01), Graf et al.
patent: 5238153 (1993-08-01), Castillo et al.
patent: 5257726 (1993-11-01), Graf et al.
patent: 5377880 (1995-01-01), Moretti
patent: 5829645 (1998-11-01), Hennemann
patent: 5988449 (1999-11-01), Fuchs et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sprayer nozzle with closing membrane does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sprayer nozzle with closing membrane, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sprayer nozzle with closing membrane will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2481540

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.