Sprayable organic fertilizer

Chemistry: fertilizers – Processes and products – Organic material-containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C071S064010, C071S064130, C071S904000

Reexamination Certificate

active

06406511

ABSTRACT:

TECHNICAL FIELD
The present invention relates to fertilizers for providing nutrients to plants, and in particular applies to an organic fertilizer that may be sprayed upon plants or plant soils as a liquid suspension.
BACKGROUND OF THE INVENTION
It is well known in application of nutrient fertilizers to commercial crops such as vegetables and turfgrass that provision of macro nutrients nitrogen, phosphorus and potassium, and especially nitrogen is essential to achieving desired growth of the crops. For example, nitrogen fertilizers are typically applied to plant communities or to soils that are to support plant communities as inorganic nitrogen salts or as highly soluble urea. Upon exposure to soil moisture, irrigation or rain water, these salts become available for uptake into the target plants to provide the foundation for metabolism of proteins, etc., as is well known. Occasionally, nitrogen salts or urea granules are first dissolved in water and applied directly to the plants or soils as a solute through a liquid applicator such as a spray machine or an irrigation system.
There are many benefits to application of such highly soluble nitrogen compounds directly to plant communities. The application can be carefully metered to achieve a desired cultural practice, such as promoting a quick flush of growth of a turfgrass after a winter dormancy to encourage dominance of the desired turfgrass over undesired, and still dormant or annual weeds in order to minimize usage of any herbicides to control weed growth. High frequency, low concentration applications can be meticulously applied to achieve optimum growth, and a winter hardening off can be assisted by precise control of fertility in the pre-winter months. Additionally, in highly sensitive greenhouse production, or in drip irrigation in arid orchard crop production, a precise amount of liquid nitrogen solutes may be delivered to target plants without wasting valuable nutrients in fertilizing non-target, adjacent plant communities.
It is increasingly recognized, however, that application of inorganic, highly soluble fertilizers, and especially fertilizers that provide nitrogen, has many deleterious effects, especially on the ecosystem of the plant communities targeted for application of the fertilizers, and for adjacent and even far removed ecosystems. Perhaps the most recognized drawback of soluble inorganic fertilizers is leaching of the nutrients into ground water. Whenever water infiltration through a soil exceeds the combination of evaporation of ground water from the soil and transpiration of ground water through a plant community, the excess water moves or leaches below the plant root zone into subterranean water movement to ultimately flow into nearby streams, aquifers, ponds, lakes, rivers, and ultimately the oceans of the world. Solutes such as nitrate and ammonium freely move with the leachate solution to increase ordinary nitrogen content of the streams, ponds, lakes, etc., which dramatically alters their ecosystems. One well-known effect frequently referred to as eutrophication is to enhance plant growth in the streams, ponds and lakes so that the ordinary dissolved oxygen content of the water is diminished, thereby decreasing available oxygen for fish that may eat the plants so that formerly pristine recreational bodies of water become weed infested, unsightly, unpleasant, and unusable problems for communities. Even more troublesome than such increased nitrogen content of streams, ponds or lakes, etc., is a concern for such nitrogen solutes in aquifers and human drinking water such as in deep wells, etc. While careful application of inorganic fertilizers may ameliorate some of this well documented problem, the unpredictability of weather conditions always poses a risk of leaching major proportions of soluble, inorganic fertilizer applications into moving ground water, such as by a sudden downpour of an inch or more of water immediately after application of such fertilizers; a very common problem in fine turfgrass culture, such as on golf courses, parks, athletic fields, etc.
Golf course fine quality turfgrasses pose a special risk of loss of soluble inorganic fertilizers. That is because it is increasingly common to utilize sand having an optimal particle size range as a major or total constituent of the root zone soil to minimize problems related to compaction due to repeated high traffic over limited turfgrass areas. While increasing sand as a constituent of the soil, or using total sand soils of specific particle size ranges, helps turfgrasses withstand high traffic, such sand soils are especially susceptible to leaching of soluble nutrients into ground water that moves the nitrogen solutes away from the target turfgrass plants and into aquifers, streams, etc.
Many efforts have been undertaken to develop slow release nitrogen fertilizers through complicated encapsulation and/or granulation methods that rely upon compounds such as urea. While some such expensive fertilizers have received limited acceptance, the vast majority of nitrogen fertilizers world-wide still include highly soluble, inorganic nitrogen salts or urea that produce nitrate or ammonium ions that freely leach from soils of target plant communities, and that are wasteful as fertilizer and disruptive of the larger ecosystem.
Additional efforts have focused upon using organic fertilizers from plant and animal sources that provide nitrogen in a slowly released form to avoid leaching of the fertilizer into ground water. To date, however, organic fertilizers have met with only limited acceptance due to substantial difficulties. One such difficulty is a low amount of nitrogen that is only slowly available. An example of an organic fertilizer that has had some success is sold under the trademark “MILORGANITE”, that is made by the Milwaukee Metropolitan Sewerage District company, of Milwaukee, Wis., U.S.A. “MILORGANITE” has a macro nutrient, or nitrogen, phosphorous, potassium, weight percent analysis of 6.75% nitrogen, 2.65% phosphorus, and 0.46% potassium and approximately 83% of the nitrogen is water insoluble. “MILORGANITE” organic fertilizer is frequently used in professional turfgrass culture and non-food horticulture such as perennial and annual flower production. However, it is virtually never the sole fertilizer for managers of such crops, and typically must be utilized with traditional highly soluble inorganic salt or urea types of nitrogen fertilizers. More traditional organic fertilizers, such as raw or processed animal waste products have problems related to low and slowly available nitrogen release rates, and also have severe use limitations based upon unacceptable odors, and application restrictions to live plant communities, such as turfgrass plantings in athletic fields, home lawns, cemeteries, parks, golf courses, etc. and have some limited utility in tilled soils prior to seeding.
Accordingly, there is a need for an organic fertilizer that will provide a substantial amount of nitrogen to target plant communities at a rate commensurate with plant nutritional needs and desired cultural practices, that will enhance the ecosystem of the soil within which the plant is growing, and that will not be leached from the soil.
SUMMARY OF THE INVENTION
The invention is a sprayable organic fertilizer for application to a plant or plant soil that includes denatured soybean particles having a total protein content of at least fifty (50) percent by weight, wherein the denatured soybean particles have a particle size of no greater than 250 microns, and wherein the denatured soybean particles are dispersed in an adequate amount of a liquid carrier so that the particles may be evenly sprayed onto the plant or plant soil through a liquid applicator. In a preferred embodiment, the denatured soybean particles are mixed with a yeast extract that stimulates microbial growth. The yeast extract may be between 0.1 percent and 1.0 percent by weight of the sprayable organic fertilizer. In an additional preferred embodiment, the denatured soybean particles have a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sprayable organic fertilizer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sprayable organic fertilizer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sprayable organic fertilizer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2969693

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.