Spray nozzle

Dispensing – With discharge assistant – Fluid pressure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S330000, C222S402130, C239S548000, C239S552000

Reexamination Certificate

active

06817493

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH/DEVELOPMENT
Not applicable
BACKGROUND OF THE INVENTION
The present invention relates to spray dispensing devices such as aerosol cans and hand held trigger pump sprayers. More particularly, it relates to nozzle outlet structures that permit such dispensers to provide at least two simultaneous spray streams which remain separate from each other for a desired distance from the dispenser.
It is often desirable to dispense a variety of chemicals in the form of liquid sprays. In an aerosol liquid spray system, one or more actives are typically mixed with a propellant and also solvent. Typical propellants are carbon dioxide, a hydrocarbon gas, or mixtures of hydrocarbon gases (such as a propane/butane mix). Typical solvents are water, hydrocarbon oils, and/or mixes thereof.
The active/propellant solvent mixture is stored under pressure in the aerosol can. The mixture is then sprayed out of the can by pushing down or sideways on an activator button at the top of the can that controls a release valve mounted in the top end of the can. The sprayed chemical may exit in an emulsion state, single phase, multiple phase, and/or be partially gaseous. Where any of what is sprayed is a liquid it is intended herein that the term “liquid material” will apply.
Without limitation, actives can include insect control agents (such as a repellent, insecticide, or growth regulator), fragrances, sanitizers, cleaners (such as surfactant containing materials), waxes or other surface treatments, deodorizers, and/or other compounds. Such actives may be for residential, business, agricultural, industrial, or other applications.
Pressure on an aerosol valve control stem can be provided by finger pressure on a button that is directly attached to the stem and has an internal passageway that leads can contents to an outlet on the side of the button. In response to actuation of the valve, the can contents are permitted to pass through to the outlet via the internal passageway, and thus there is created a spray that exits to the ambient environment. Alternatively, aerosol cans can be actuated by a combined over cap and actuator which provides an upper press pad connected by a living hinge to a skirt of the over cap. See e.g. U.S. Pat. No. 6,006,957.
It is sometimes desirable to directly aim an aerosol spray at a known desired small target. For example, a user may see a cockroach near a corner of a room at a location that is not easily reached by hand or foot, and desire to specifically aim the aerosol spray at it. However, in many other situations it is desirable to direct spray somewhat more broadly, such as when spraying a particular region for a prophylactic effect or cleaning. While there are a few other situations (e.g. fogging a room) where an essentially undirected spray may be desirable, in many circumstances there will be an optimal size for the spray pattern for a particular application.
Where a dispenser nozzle is fed from a single reservoir of chemical (the most typical case for aerosol cans), there are circumstances in which it is desirable to provide the consumer with the visual impression that the formulation contains multiple features. For example, an insect repellant spray might contain both a repellant material and a sunscreen material, and it could be desired to remind consumers that they are applying more than just a repellant when they spray. If the two actives are already mixed together in a single storage reservoir, it can therefore be desirable for the feed line from the single reservoir to be split into two outlet paths, with the paths then delivering two separate spray streams. This will provide a consumer with a reminder that the product contains more than just a single active. Also, this will provide a spray pattern that is somewhat wider, and therefore a pattern that has better area coverage than a more narrow spray system might have.
However, conventional two outlet sprayers either create too wide a spray pattern for certain applications, or are extremely bulky, or are difficult to manufacture. Others provide a spray pattern that collapses too quickly to be readily visually perceived as deriving from separate streams.
In other unrelated developments the art has provided a number of binary/two-part chemical dispensers. These systems store one chemical formulation in one reservoir and another chemical formulation in another reservoir. They are separately stored because the formulations are incompatible with each other for long-term storage (e.g. a dye in one formulation and a sensitive bleach in another; a carbonate in one formulation and an acid in another). See e.g. U.S. Pat. No. 6,550,694 (trigger pump sprayer).
Many of these binary pump systems permit these reservoirs to feed a common outlet within the spray dispenser so that mixing of the two formulations occurs within the dispenser. This can be disadvantageous because the separately stored chemicals can prematurely react, thereby causing clogging problems or disruption of the spray pattern, and in any event the consumer might not as easily appreciate the dual active nature of the product.
As a result, there have been a number of attempts to dispense formulations from two separate reservoirs in which the spray streams are directed to remain separate until outside the dispenser for some distance. See e.g. U.S. Pat. No. 5,005,536 for an aerosol system and U.S. Pat. No. 4,902,281 for a pump sprayer system. However, such systems are quite bulky (particularly at the outlet end), and are expensive to produce.
Even in those cases where the dispenser is more compact (e.g. the nozzle has two side-by-side adjacent outlets that parallel each other), the resulting spray streams have tended to collapse together only a very short distance from the dispenser.
Hence, the need still exists for improved nozzle assemblies, particularly those that can deliver two separate streams from a dispenser in an optimal way.
BRIEF SUMMARY OF THE INVENTION
The invention provides a nozzle for a spray dispenser, the nozzle being suitable to dispense a liquid material. There is a nozzle body having an inlet suitable to be positioned in communication with at least one reservoir having liquid material to be dispensed, an outlet end, and at least one conduit there between. The outlet end has two outlet pathways capable of being in communication with the inlet, the two outlet pathways each extending along its own longitudinal axis and having its own outer end.
At least the outer end of one of the outlet pathways is truncated at an angle that is non-perpendicular to the longitudinal axis of that outlet pathway adjacent that outer end, and the outer end of the other of the outlet pathways is truncated at an angle relative to its longitudinal axis adjacent its outer end which is different from the truncation angle for said first of the outlet pathways. For this purpose, a downward slope angle of a particular degree is considered different from an upward slope angle of even that same degree.
In any event, the longitudinal axis of a first of the two outlet pathways adjacent its outer end is essentially parallel to the longitudinal axis of the second of the two outlet pathways adjacent its outer end. This provides a very compact configuration.
In a particularly preferred embodiment, the outer end of the outlet pathway of a first of said outlet pathways is truncated at an angle that is non-perpendicular to the longitudinal axis of that outlet pathway adjacent that outer end, and the outer end of the other outlet pathway is also truncated at an angle that is non-perpendicular to its longitudinal axis adjacent its outer end. This is particularly desirable where one of the outlet pathways is positioned directly vertically above the second of the two outlet pathways. In this form one outlet pathway is configured to be able to direct spray at least partially downwardly as it exits the nozzle, and the other outlet pathway is configured so as to be able to direct spray at least p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spray nozzle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spray nozzle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spray nozzle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3356903

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.