Coating apparatus – Projection or spray type – Flexible web or strand work
Reexamination Certificate
2001-01-31
2003-04-15
Crispino, Richard (Department: 1734)
Coating apparatus
Projection or spray type
Flexible web or strand work
C118S315000, C118S326000
Reexamination Certificate
active
06547883
ABSTRACT:
TECHNICAL FIELD AND INDUSTRIAL APPLICABILITY OF THE INVENTION
The present invention relates to systems for applying liquid compositions to the individual fibers of a fan of fibers. More particularly, the present invention relates to an apparatus for applying a liquid composition to the individual fibers of a fan of fibers, wherein the liquid composition is directed onto the fan of fibers such that a substantially uniform coating of the liquid composition is applied to each of the fibers.
BACKGROUND OF THE INVENTION
Fiberglass strands used, for example, in manufacturing fiberglass-reinforced products, typically are formed by gathering the individual fibers of a fan of glass fibers exiting a glass fiber-forming bushing and by combining the individual glass fibers into one or more strands. Typically, a sizing composition is applied, such as, by an applicator roll, to the individual fibers, wherein the sizing composition serves to reduce fiber stress caused by, for example, fiber-to-fiber friction associated with direct fiber-to-fiber contact. The applicator roll typically is cylindrical, is constructed from graphite and is driven to rotate at a modest rotational velocity, relative to the tangential linear velocity of the fibers as they pass over (and typically contact) the roll.
The sizing composition is applied to the roll, such as, for example, by submerging a portion of the roll into a shallow pool of sizing composition contained within a pan. The roll is then rotated such that the sizing composition is transferred to a position of the roll, whereat the fan of fibers momentarily contact, or “kiss”, the roll and pick up a small quantity of the sizing composition. The amount of sizing applied to the fibers by the applicator roll is controlled, for example, by controlling the rotational velocity of the roll relative to the tangential linear velocity of the fibers as they kiss the roll. U.S. Pat. No. 4,517,916 to Barch, et al. is illustrative of prior art attempts to provide a cylindrical applicator roll for applying a chemical treatment to textile fibers.
However, an applicator roll typically does not substantially uniformly coat the fibers with the sizing composition. Moreover, direct fiber-to-roll contact oftentimes results in so-called “fiber walking” of the fibers over the surface of the roll, as well as increases shear and tensile stresses within the fibers. Of course, increasing the stresses within the fibers thereby increases the likelihood that the fibers may break while being gathering into a strand. More importantly, the imparted stresses may contribute to diminished performance in finished composite structures. Because conventional fiber gathering machines typically operate at high rates of speed, fiber breakage during gathering oftentimes results in significant periods of machine downtime and in the generation of excessive waste material. It is therefore desirable to provide an apparatus for applying a liquid composition to one or more fibers of a fan of fibers, wherein fiber stress is minimized.
One known method of applying a coating, for example, of fluent material, to a moving surface, such as, to a web of knitted or woven fabric, wherein it is not necessary to contact the web in order to apply the fluent material thereto, is taught by U.S. Pat. No. 5,795,391 to Niemann, et al., which provides a row of rotatable spray heads oriented transversely to a path of travel of the web. The rotatably spray heads are positioned within a shroud having an elongated opening, through which the spray heads direct a single plane-like stream of fluent material or course droplets onto the web as the web travels thereby. However, because coating efficiency typically decreases as the velocity at which the web travels past the elongated opening increases, a row of rotatable spray heads, such as is taught by Niemann '391, is not adapted to apply a coating, for example, of a sizing composition, to a fan of fibers, for example, of fiberglass fibers, which typically travels at a high rate of speed. It is therefore desirable to provide an apparatus for applying a liquid composition to one or more fibers of a fan of fibers traveling at a high rate of speed.
It is furthermore desirable to provide an apparatus for applying a liquid composition to one or more fibers of a fan of fibers traveling at a high rate of speed, wherein a substantially uniform coating of the liquid composition is applied to each of the fibers.
It is also desirable to provide an apparatus and method for applying a liquid composition to one or more fibers of a fan of fibers traveling at a high rate of speed, wherein a substantially uniform coating of the liquid composition is applied to the fibers, and wherein the apparatus does not contact the fibers directly.
SUMMARY OF THE INVENTION
The present invention is for an apparatus and method for applying a liquid composition to one or more fibers of a fan of fibers traveling at a high rate of speed. For example, the present invention provides an apparatus and method for applying a sizing composition to one or more fiberglass fibers being gathered into one or more fiberglass strands used, for example, as reinforcing fibers of a fiberglass-reinforced product.
According to a preferred embodiment of the present invention, an apparatus for applying a liquid composition to one or more fibers of a fan of fibers traveling at a high rate of speed includes a housing (also referred to herein as an “enclosure”) defining an elongated passageway therethrough and a plurality of centrifugal spray heads mounted within the housing. Each of the plurality of spray heads receives liquid composition and directs atomized liquid composition into the passageway of the housing such that, as the fan of fibers travels along a path through the passageway, the fibers are coated substantially uniformly with droplets of the liquid composition.
Preferably, the plurality of spray heads include a first spray head positioned within the housing such that an atomized composition is directed therefrom towards a first location of the path, and a second spray head positioned within the housing such that an atomized liquid composition is directed therefrom towards a second location of the path. The first and second locations are spaced along the path such that atomized liquid composition is directed onto the fibers at at least two separate locations thereof, thereby increasing the overall coating efficiency of the apparatus.
In one implementation, the housing is of a substantially box-like construction surrounding the spray heads and includes an access panel removably affixed thereto for gaining access to the spray heads. A drive is mounted to the housing and is operatively connected to each of the spray heads, preferably in parallel, using timing belts or the like, to provide rotational movement of any rotational components of the spray heads. In another implementation, a shaft structure driven by an air motor or like device is provided for driving multiple spray heads in unison. The housing includes one mounting shelf for each of the spray heads. Each mounting shelf may include shields, baffles, deflectors, or the like, extending therefrom to control or direct either atomized liquid composition exiting the spray head mounted therein or air circulating within the housing. Each mounting shelf may be pivotably affixed to the housing such that the angle or orientation of the spray head mounted therein is adjustable, relative to the plane or path of travel of the fan of fibers moving through the passageway of the housing, thereby providing control of the angle at which the atomized liquid composition exiting the spray head impinges on the moving fan of fibers.
Assuming that the fan of fibers is substantially longer than it is wide, and assuming further that the fan of fibers travels along a path through the passageway, the first and second spray heads may be positioned either both facing one surface of the fan (i.e., both spray heads are on one side of the fan) or each facing an opposing surface of the fan (i.e., on
Gao Gary
Green Richard A.
Matteson Thomas O.
Molnar David L.
Barns Stephen W.
Crispino Richard
Eckert Inger H.
Gasaway Maria C.
Owens Corning Fiberglas Technology Inc.
LandOfFree
Spray coating applicator apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Spray coating applicator apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spray coating applicator apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3103430