Apparel – Guard or protector – For wearer's head
Reexamination Certificate
2003-02-26
2004-06-22
Lindsey, Rodney M. (Department: 3765)
Apparel
Guard or protector
For wearer's head
C002S417000, C002S425000
Reexamination Certificate
active
06751808
ABSTRACT:
SCOPE OF THE INVENTION
The present invention relates to a sports helmet which is characterized by two or more parts or panel sections which are joined so that upon the application of a minimum impact force, the parts permit predetermined and controlled movement relative to each other in increments, via a series of mechanisms, to function overall as an impact absorbing ‘crumple’ or ‘shear zone’.
Thus while providing the usual protection to the head from puncture or direct compressive force, this helmet will provide unique additional and much needed protection by absorbing and/or redirecting the impact forces across the skull, rather than transferring them through the cranium to the brain inside, as currently is the norm. If an egg is shaken hard, the yoke will break inside, as the transfer of forces cause the yoke to dash upon the insides of the shell, while the shell itself remains undamaged. Known as a ‘contre’ coup’ injury, this is how ‘shaken baby syndrome’ injuries occur and is well documented as the mechanism of injury most responsible for the majority of brain trauma; not actual skull fractures. It is inherent in any fall or impact to the head and urgently needs to be addressed in helmet design. This helmet will function to prevent this analogy happening to the delicate brain, which like the yoke is surrounded by fluid within a hard and unyielding shell, or cranium.
BACKGROUND OF THE INVENTION
The use of helmets to protect the head from injury has been done through the centuries, and for a variety of activities ranging from warfare to the more common uses today of sports and recreation. Typical helmet construction consists of a rigid or semi-rigid shell formed into a generally domed-shape, which covers the majority of the user's head and frequently incorporates a chinstrap to secure the shell in the preferred position on the head. Depending upon the shell construction, padding or cushioning may also be provided along the inside of the shell for increased comfort, better fit and to assist in the absorption of any impact forces.
Helmets from their first use to today, have essentially been an artificial skull over the human skull and thus only duplicate the same protection the natural skull is already providing, without adding any more safety dimensions. In fact, the extra ‘skull’ serves to increase the weight of the head relative to the neck muscles, which is well-researched cause of both soft tissue and bone injuries. More important for injuries, this additional weight increases the acceleration potential ((increased) mass×velocity) of the brain inside the cranium, after impact.
Conventional helmets are formed from molded semi-rigid polystyrene or Styrofoam™ bonded to a plastic outer skin, or the hard rigid shell is lined with soft padding. There is an important disadvantage and negative safety feature inherent with both of these common conventional helmet styles. In order to provide sufficient protection from impact forces, heretofore it has been the practice of the helmet manufacturers to form the polystyrene shell layer with a thickness of one inch or more, and if the padding is for comfort it is often of similar thickness. As a result, when worn, these sports helmets project outwardly a distance of two inches or more from the wearer's head, increasing the diameter of the natural skull and adding physical disproportion of head to shoulder/torso, for optimal muscular control.
Upon impact from anything other than a true perpendicular force vector, the skull/helmet combination acts as a fulcrum as the neck and body ‘bends’ around it. With increased diameter, the range and magnitude of ‘bend’ at the fulcrum is dramatically increased and ultimately, the quantity and quality of associated injuries. This is one of the most common ways for avulsion of bone, discs and muscles and it is the classical method for cervical nerve root stretch, rupture or avulsion. Termed a ‘zinger’ in its mild, temporary form, permanent total nerve loss results when the ‘bending’ injury is more severe. Larger diameter and/or added weight invariably increase rotational force potential and rotation, according to whiplash research, is the most destructive.
SUMMARY OF THE INVENTION
Accordingly, the present invention strives to overcome some of the disadvantages of prior art helmets by a) providing a protective helmet that is closer in weight and size to the user's anatomical head, thereby minimizing resultant disproportion between the head with helmet and the neck/torso and by b) redirecting or dissipating injurious forces away from the head and brain, by using interlocking component panels that will move relative to each other in predetermined directions and increments, effectively producing a ‘crumple zone’ or ‘shear zone’.
A practical advantage with this invention that also improves safety, is that the three discrete portions or panels, enable better customizing to fit different head shapes such as oval, oblong and round, not just adapt to sizes. Parents will be able to customize the helmets as their children grow, thus avoiding the understandable but dangerous habit of buying large so that the child will ‘grow into it’. A frontal fall in a helmet that is too large, forces the helmet backwards and can force the back of the helmet into the neck at the base of the skull, at the anatomical area of the brain stem, with tragic results often worse than if a helmet had not been worn at all.
A very important safety feature of this design is that because of the interlocking panels, absorbing or re-directing force vectors along predetermined, incremental stages, any rotational vectors at the time of impact will be decreased or actually changed to linear vectors, thereby reducing the risk of the very damaging rotational injuries to the nerve roots and/or brain stem. This helmet is designed to absorb kinetic and/or potential energy at the time of the fall/impact, and transfer it along more controlled, less damaging vectors away from the head and brain.
A practical consideration is that this helmet design will be lightweight, comfortable and versatile enough to accommodate most recreational and sporting activities including bicycling, snowboarding, skateboarding, roller blading, horseback riding and with minimal modifications to protect the face, more aggressive activities such as hockey and football. Thoughts have been given to aesthetics, since a helmet cannot protect if it is not worn and thus, especially for the high risk, energetic youths, this design allows for simple dressing with caps to provide ‘visual appeal’.
There has been a desperate call from the professional community treating head injuries, for a radically different helmet design, away from the ‘skull over the skull’ concept, to one that incorporates current knowledge of how head, neck and especially ‘contre’ coup’ injuries occur. The design of this helmet focuses first on accepted injury mechanisms and then simulates some of the effective structural features used in automobiles to reduce passenger injuries and some used in building structures to reduce earthquake damage. If the impact is severe enough, the final stages of the helmet ‘crumple zone’ will allow structural alterations, similar to vehicle crumple zones, thereby minimizing transfer of injurious forces to what it is protecting.
This helmet basic design includes an ‘I’ shaped central convex shaped component extending across the vertex/top of the skull, with the shorter extensions covering the forehead and base of the skull. In addition to this, there are two lateral convex components covering the sides of the skull, which interlock and join the centrepiece to complete the helmet. The three panels may be physically joined together in several ways concurrently, including a slot/tab arrangement or through the use of mechanical fasteners such as permanent or removable screws, pins, clips and/or rivets and the like. The slots/tab configurations and the fasteners allow incremental, predetermined movement, between the component parts upon impact.
The final sizing of helmet
LandOfFree
Sports helmet having impact absorbing crumple or shear zone does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sports helmet having impact absorbing crumple or shear zone, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sports helmet having impact absorbing crumple or shear zone will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3329928