Split roller wheel and method of assembly

Conveyors: power-driven – Conveyor section – Live roll

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C193S0350MD, C414S529000

Reexamination Certificate

active

06315109

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to roller wheels of the type used to laterally move goods on a platform. Such roller wheels may be used in mobile loaders that incorporate at least one variable height platform, wherein a roller wheel is mounted on a shaft which may be selectively powered. Mobile loaders of this type are commonly used for loading and unloading freight in the cargo holds of aircraft. Still more particularly, the present invention relates to a split roller wheel that may be mounted on and removed from an axle without requiring access to the axle end.
BACKGROUND OF THE INVENTION
Mobile loaders are essential equipment for the loading and unloading of containerized and palletized cargo into and from the holds of aircraft. Such loaders often employ two platforms. One platform, usually referred to as the bridge, provides an interface with the sill of the cargo door. The bridge is supported on a hydraulic lift, which provides a high degree of control and stability and allows the height of the bridge to be adjusted to correspond to the height of the aircraft cargo door. Once the bridge is positioned, it typically remains in a substantially constant position with respect to the aircraft, although it is known to make slight adjustments to the height of the bridge to compensate for shifts in the height of the aircraft cargo door as the plane is loaded or unloaded. Although the balance of the following discussion is presented in terms of a loading process in which cargo is placed onto an aircraft, it will be understood all concepts apply equally to unloading processes.
The second platform, hereinafter referred to as the platform, cycles up and down during the loading process, delivering cargo to the bridge. The platform is typically raised and lowered by means of hydraulic systems acting through mechanical linkages that ensure that the platform maintains a substantially horizontal attitude. For example, a pair of chains powered by hydraulic cylinders may cooperate with a platform squaring or stabilizing scissors to ensure that the platform moves vertically during raising and lowering. Cargo loaders of this type are known in the art.
The decks of the platform and bridge sections of cargo loaders are typically provided with an array of some type of friction-reducing device, so that containers and pallets can be easily slidably moved across the deck. In addition, the decks are provided with one or more powered devices for applying a motive force to the cargo. The powered devices may be wheels, rollers, belts or the like. Because of the nature of the loading process, which may entail lateral, longitudinal and rotational movement, the friction reducing devices on the surface rotate in whichever direction is required to achieve the desired movement, or at least not impede the desired movement. Thus, suitable friction reducing devices may be casters, rollers, wheels, or some combination thereof, and may be actuable in and out of engagement with the underside(s) of the cargo. One type of friction reducing device that is known for such omni-directional applications is a roller wheel, which essentially comprises a wheel hub having an axis and a plurality of peripheral rollers, with the peripheral rollers rotating about individual axes that are normal to the axis of the hub. A roller wheel may be mounted on a shaft which is rotated selectively in either rotational direction. In addition, roller wheels are known in which peripheral rollers are mounted on the hub in two rows, with the peripheral rollers in one row being staggered from the peripheral rollers in another row. Staggering the rollers relative to each other provides for constant contact of at least one peripheral roller of one of the wheels with a load-bearing surface at all times. Examples of roller wheels can be found in U.S. Pat. Nos. Des. 309,254, 318,791, U.S. Pat. Nos. 1,305,535 and 3,465,843. A complex roller assembly is disclosed in U.S. Pat. No. 4,223,753.
A significant problem with conventional roller wheels, and particularly dual hub roller wheels, is that the monolithic wheel hub is provided with a central bore for receiving the axle, which rotates with the wheel hub about the hub axis. This means that any installation, removal, repair or replacement of a roller wheel requires access to one end of the axle and requires that removal of the roller wheel from the axle be accomplished by sliding the roller wheel axially along the axle until it reaches and slides off the end of the axle. This type of access to the roller wheels may be acceptable during initial assembly, or in instances where the axle length is not great. However, in circumstances where the roller wheel is part of a complex assembly, or where the axle itself is relatively long, the need to remove a roller wheel from the axle in this manner becomes undesirable. An undesirable amount of disassembly and associated labor are thus expended replacing worn roller wheels and reinstalling new or refurbished roller wheels. The burden is particularly great when several roller wheels are mounted on a single axis, as it necessitates removal and subsequent replacement of all roller wheels between the defective wheel and the axle end.
Hence, it is desired to provide a roller wheel that can be quickly and easily installed on a drive axle without requiring access to the axle end. The desired roller wheel should also be durable and able to withstand the severe loading involved in cargo transfer.
SUMMARY OF THE INVENTION
The present invention provides a roller wheel that may be quickly and easily installed on an axle without requiring access to the axle end. The roller wheel is also durable and may be designed to withstand the severe loading involved in cargo transfer. The roller wheel comprises a split wheel hub that supports a plurality of peripheral rollers. In a preferred embodiment, the hub comprises two asymmetric hub halves that may be fastened together about an axle. The halves are held together by spanning rollers and bolts passing through aligned holes in flanges in the hub halves.
A first plurality of peripheral rollers are rotatably mounted in one row about the periphery of the hub, and a second plurality of peripheral rollers are similarly mounted in another row about the periphery of the hub. Each of the second plurality of rollers is spaced along the hub axis from the first plurality of rollers, and is circumferentially spaced between a pair of the first plurality of rollers.
In a preferred embodiment, a plurality of first roller support brackets are fixedly secured to the split wheel hub, and a first plurality of roller shafts extend between a pair of first roller brackets for supporting a corresponding one of the first plurality of peripheral rollers. At least one of the first plurality of roller shafts extend between a first roller bracket fixed to the first hub part and a first roller bracket fixed to the second hub part. A plurality of second roller brackets are similarly fixed to the split wheel hub, and a second plurality of roller shafts are similarly positioned between a pair of second roller brackets for supporting a second plurality of rollers. The first and second hub parts may each be unitary and substantially identical hub parts, and the second hub part may be inverted on the shaft with respect to the first hub part. The hub may include a front face panel positioned within a plane substantially perpendicular to the hub axis and a rear face panel positioned within another plane perpendicular to the hub axis. A medial panel may be spaced opposite the front hub panel with respect to the first plurality of rollers and opposite the rear face panel with respect to the second plurality of rollers. In a preferred embodiment, each of the rollers may be provided with an axis of rotation which is substantially perpendicular to the hub axis, and the roller wheel assembly may include at least four circumferentially spaced first rollers in the first row, and four circumferentially spaced second rollers in the second row.
It is an object

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Split roller wheel and method of assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Split roller wheel and method of assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Split roller wheel and method of assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2616802

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.