Splash-shield and related fluid delivery device

Surgery – Means for introducing or removing material from body for... – Treating material applied to or removed from external...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S313000

Reexamination Certificate

active

06210381

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to medical devices and, more particularly, to a splash-shield and related fluid delivery device for providing effective irrigation while also preventing the splash of contaminated irrigating fluids onto administering personnel.
BACKGROUND OF THE INVENTION
Irrigation and lavage (referred to collectively as “irrigation”) are commonly used in medicine to cleanse areas of the body of microscopic and macroscopic foreign contamination. Such areas of the body shall be referred to herein as “compromised areas.” Such compromised areas include skin or wounds contaminated with infectious organisms, such as hepatitis virus, human immunodeficiency virus, or with biologically or chemically toxic matter. In such cases, medical personnel endeavor to remove the contaminant through copious irrigation, often with a saline solution. The fluid used to irrigate such compromised areas, the so-called “irrigant,” will generally become contaminated itself after contact with and irrigation of the infected area. If this contaminated irrigant contacts other, uninfected areas of the patient, there is a risk of further infection, which is obviously undesirable.
Accordingly, there is a need to drain or remove the contaminated irrigant from unnecessary further contact with the uninfected or uncompromised areas of the patient.
There is also a risk that the contaminated irrigant will contaminate the administering medical personnel. Syringes and needles are commonly used in a variety of configurations to provide irrigation. As such, the irrigant generally exits from a fluid delivery nozzle toward the compromised area under pressure, and if the fluid stream is not properly directed, controlled, or circumscribed, the contaminated irrigant will “splash back” onto, or otherwise make unintended contact with the administering personnel. This undesirable risk of being splashed with contaminated irrigant is all the more acute when copious amounts of irrigant are used or delivered under high pressure.
There is, accordingly, a further need to protect the administering personnel from undue exposure to contaminated irrigant splashing back from the compromised area or otherwise contacting such personnel.
The syringes and needles typically used in irrigation generally do not themselves protect either the patient or administering personnel from splash back of contaminated irrigant or undesired contact therewith. The current art has attempted to overcome this disadvantage, but such attempts have there own drawbacks and disadvantages, or have been generally ineffective.
For example, administering personnel often take universal or general precautions against contamination, such as impermeable gloves, clothing barriers, eye protection, and face-masks. To assure adequate protection from such general precautions, however, they are generally combined, in hopes of synergistically enhancing protection from contamination. This approach has the disadvantage not only of greater expense, but also greater inconvenience to the administering personnel, as well as excessive time spent in taking precautionary measures.
Moreover, the use of syringes or needles risks causing further injury to soft tissue structures, such as vessels, nerves, tendons, or other subcutaneous structures often found within a wound or other compromised area during the irrigation process. In the case of sharp needles attached to a syringe for purposes of irrigation, there is also the risk of delivering irrigant at excessive pressure and thereby further damaging the area. There is likewise the risk of puncture with a contaminated needle, either to the administering personnel or the patient.
One approach to solve the above-described drawbacks and disadvantages is to provide the syringe or other fluid delivery device with a shield to prevent undesired splash back of contaminated irrigant. An example of this approach is found in U.S. Pat. No. 4,769,003 (Stamler). The shield in Stamler is designed to be tilted in proximity to the area being treated to allow drainage. One of the drawbacks of this approach, however, is that the exiting fluid stream may become, under certain circumstances, difficult to direct as desired, or may not be adequately controlled or circumscribed by the disclosed structure. Under such circumstances, it is possible for both the patient and the administering personnel to come into unnecessary contact with contaminated irrigant.
Further examples of shields on fluid delivery devices are found in U.S. Pat. No. 5,735,833 (Olson); U.S. Pat. No. 5,030,214 (Spector); and U.S. Pat. No. 4,692,140 (Olson). These approaches, however, also suffer from various drawbacks and disadvantages. For example, irrigant may be dispersed inefficiently by the structures disclosed in these references. Further, the disclosed prior art devices can be cumbersome to use in certain situations, or may likewise be cost prohibitive. As such, these devices may not be well suited for applications requiring either portability of the device, or disposal after use.
A solution is thus needed which better balances the often competing interests associated with irrigation of compromised areas of the body.
It is desirable to balance the need to cleanse the compromised area quickly and effectively, with the need to protect both the patient and the medical personnel from unnecessary contact with the irrigant.
A device is needed which delivers irrigant at sufficient volume to cleanse the area, but not at such high pressure as to damage the area.
Notwithstanding the copious volume of irrigant which may be required, a device is needed to prevent the irrigant from splashing back onto the administering personnel, but in so doing, the device should also minimize the undesirable contact of contaminated irrigant with uncontaminated areas of the patient.
Still further, it is desirable for the device to be easy to use in emergency situations, and adaptable for use with various different syringes or still other fluid delivery devices.
SUMMARY
A medical device according to the present invention delivers irrigating fluid to a wound or other compromised area of a patient and includes a splash-shield for controlling (or “circumscribing”) the flow of the irrigant to minimize undesired contact with spent or contaminated irrigant, especially irrigant that splashes off of the area being irrigated. The structure of the splash-shield which circumscribes the flow of irrigant keeps the spent or contaminated irrigant away from not only the administrating personnel, but also the patient. A bell on the splash-shield has a proximal and a distal end, and the bell terminates in a rim with a rounded lip formed thereon. A fitting is formed at the proximal end of the bell, and the fitting is designed with a passage therein to receive the exit end of a fluid delivery device. The passage extends through the surface of the bell at an angle relative to the plane of the rim. At least one, preferably two bights are formed in the rim of the bell to define a corresponding drainage opening or openings.
In one version of the invention, the rim can be thought of as having a leading edge and a trailing edge opposite the leading edge. The passage exits at a location on the inner surface of the bell which is closer to the trailing edge than the leading edge, and the passage is oriented toward the leading edge. The drainage opening, in contrast, is located on the opposite leading edge. In this way, the fluid exiting the passage, although directed at the compromised area for irrigation purposes, also has a directional component toward the leading edge. This directional component toward the drainage openings is thought to improve the efficacy of irrigation and encourage drainage of spent irrigant through the drainage opening.
In accordance with another aspect of the invention, the bell has a radius increasing from the proximal end to the distal end, but with the radius at the leading edge increasing more rapidly than the radius at the trailing edge. As such, the bell encloses a volume in the shape of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Splash-shield and related fluid delivery device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Splash-shield and related fluid delivery device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Splash-shield and related fluid delivery device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2475839

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.