Spiro[pyrrolidine-2,3′-oxindole] compounds...

Chemistry: analytical and immunological testing – Biospecific ligand binding assay

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S007200, C435S091500, C436S518000, C548S147000, C548S159000, C548S179000, C548S410000, C548S411000

Reexamination Certificate

active

06358750

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates generally to spiro-[pyrrolidine-2,3′-oxindole] compounds, to combinatorial libraries of spiro[pyrrolidine-2,3′-oxindole] compounds, and to methods of synthesizing and assaying such libraries. The compounds can be formed, for example, via 1,3-dipolar cycloaddition of reactive isatin-amino acid adducts to substituted trans-chalcones and other dipolarophiles.
Oxindole alkaloids are a rich class of bioactive compounds. For example, gelsemine is a spirooxindole alkaloid that possesses central nervous system (CNS) stimulating activity. Other spirooxindoles are aldose reductase inhibitors and are used as antidiabetic drugs.
In classical drug design, many individual compounds are synthesized one at a time and then screened. This is a relatively labor-intensive process. An alternative approach is rational drug design. One aspect of rational drug design includes structure-guided methods. One structure-guided approach to the discovery of new pharmaceutically active organic drugs (e.g., compounds with the three-dimensional structure needed for binding) relies primarily on X-ray crystallography of purified receptors. Once a binding site is identified, organic molecules are designed to fit the available steric space and charge distribution. However, it is often difficult to obtain purified receptors, and still more difficult to crystallize the receptor so that X-ray crystallography can be applied.
Other methods such as homology modelling or nuclear magnetic resonance studies can also be used to identify the binding site, although it is still difficult to devise an appropriate ligand, even after the binding site has been properly identified. Overall, it is quite difficult to design useful pharmaceutically active compounds because of factors such as the difficulty in identifying receptors, purifying and identifying the structures of compounds which bind to those receptors, and thereafter synthesizing those compounds.
Another approach to the discovery of new drugs is through pharmacophore-guided design. If a number of molecules (e.g., biologically active compounds) are known to bind, for example, to a macromolecule, new compounds can be synthesized that mimic the known molecules. However, since the active moiety or active structural component of the active compound is usually unknown, the process of synthesizing new compounds relies primarily on trial and error and the synthesis and screening of each compound individually. This method is time consuming and expensive since the likelihood of success for any single compound is relatively low.
Rather than trying to determine the particular three-dimensional structure of a protein using crystallography or attempting to synthesize specific compounds that mimic a known biologically active compound, researchers have also developed assays to screen combinatorial libraries of candidate compounds. More specifically, those attempting to create biologically active compounds produce extremely large numbers of different compounds at the same time either within the same reaction vessel or in separate vessels. The synthesized combinatorial library is then assayed and active molecules are isolated (e.g., in the case of mixtures of compounds) and analyzed.
SUMMARY OF THE INVENTION
In general, the invention is based on the discovery that under the right conditions, variously substituted isatins, &agr;-amino acids, and dipolarophiles (e.g., trans-chalcones, acrylate esters, or vinyl oxindoles) can stereo-and regio-selectively react to form libraries of spiro[pyrrolidine-2,3′-oxindole] compounds. The new libraries can be assayed using any of many known screening procedures for activity, e.g., biological activity. For example, the libraries can be screened for activity as drugs (e.g., anticancer drugs, antibiotics, antiviral drugs, antiinflammatory drugs, analgesics, kinase inhibitors, immunomodulators, neuroleptics, sedatives, stimulants, or diagnostic aids), bioseparation agents (e.g., affinity ligands), or pesticides (e.g., herbicides, insecticides, or rodenticides).
In one embodiment, the invention features a method of synthesizing a library of compounds (e.g., including 10, 100, 5,000, 10,000, 100,000 or more compounds). The method includes reacting a plurality of isatins with a plurality of &agr;-amino acids, independently, to form azomethine ylide compounds; and reacting the azomethine ylides with a plurality of dipolarophiles (e.g., chalcones, acrylate esters, vinyl oxindoles, fumarates, maleates, maleimides, cinnamonitriles, nitroolefins, acrylonitriles, vinyl sulfones, or vinyl sulfoxides), independently, to form the library of compounds.
The chalcones can be prepared, for example, by reacting each of a plurality of arylaldehydes, independently, with each of a plurality of acetophenone compounds. Certain acrylate esters (e.g., cinnamates) can be prepared, for example, by reacting each of a plurality of arylaldehydes with trimethylphosphonoacetate under Horner-Emmons condensation reaction conditions. Vinyloxindoles can be prepared, for example, by reacting oxindoles with arylaldehydes, or by reacting isatins with acetophenone compounds. Azomethine ylides can be prepared in situ in the presence of the dipolarophiles.
In certain cases, the library of compounds is prepared in a single compound-per-well format, wherein each well (e.g., a well of a 96-well plate, a test tube, a centrifuge tube, a flask, a beaker, or other container) contains predominantly a single member of a library of the invention.
In another embodiment, the invention features a chemical library that includes ten or more different compounds, each compound being produced from a reaction of each of a plurality of isatins with each of a plurality of &agr;-amino acids, and with each of a plurality of dipolarophiles (e.g., in a [2+3] reaction as shown in FIG.
2
). Each of the ten or more compounds is present in the library in a retrievable and analyzable amount.
The invention also features a chemical library that includes ten or more different compounds each present in a retrievable and analyzable amount. Each compound can be represented by the structural formula:
where R
1
to R
4
, independently, can be hydrogen, alkyl, aryl, carbocyclic, fluoro, chloro, bromo, iodo, thio, hydroxyl, alkylthio, alkoxy, carboxy, sulfonyl, nitro, cyano, or amido groups, or, if compatible with the reaction conditions, keto, formyl, or amino groups or other substituents. R
5
to R
12
, independently, can be hydrogen, alkyl, aryl, or carbocyclic groups. In some cases, R
6
(or R
7
) and R
12
, R
8
and R
9
, R
10
and R
11
, or R
8
(or R
9
) and R
10
(or R
11
) can together form at least part of a ring. Preferably, at least one of R
8
to R
11
is an electron withdrawing group.
In another aspect, the invention features a method for identifying a compound that binds to a macromolecule. The method includes screening any of the above libraries for a characteristic that indicates bioactivity. For example, the compound can be a bioactive molecule (i.e., a molecule that affects the function of a target or that modulates the biological activity of a target, by, for example, upregulating or downregulating activity). The compound can also bind to a receptor or inhibit an enzyme.
In still another embodiment, the invention features a method for preparing a spiro[pyrrolidine-2,3′-oxindole] compound. The method includes reacting an isatin (e.g., an isatin of Table 1) with an &agr;-amino acid (e.g., an &agr;-amino acid of Table 2) to form an azomethine ylide; and reacting the azomethine ylide with a chalcone (e.g., a chalcone prepared from the reaction of an arylaldehyde of Table 3 and an acetophenone compound of Table 4) to form the spiro[pyrrolidine-2,3′-oxindole].
In another aspect, the invention features a spiro compound comprising the formula:
where Ar
1
and Ar
2
can be, independently, substituted or unsubstituted aryl or heteroaryl groups; R
1
to R
4
, independently, can be

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spiro[pyrrolidine-2,3′-oxindole] compounds... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spiro[pyrrolidine-2,3′-oxindole] compounds..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spiro[pyrrolidine-2,3′-oxindole] compounds... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2873419

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.