Spinocerebellar ataxia type 8 and methods of detection

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091200, C435S091100, C536S023100, C536S024300

Reexamination Certificate

active

06524791

ABSTRACT:

BACKGROUND
The ataxias are a clinically and genetically heterogeneous group of neurodegenerative diseases that variably affect the cerebellum, brainstem, and spinocerebellar tracts. Trinucleotide repeat expansions have been shown to be the mutational mechanism responsible for a number of the ataxias as well as other neurological diseases. The underlying molecular mechanism responsible for the pathology associated with these diseases falls into three broad categories. First, the largest group of triplet repeat diseases are those associated with CAG expansions that are translated into polyglutamine tracts. Diseases caused by polyglutamine expansions include spinal and bulbar muscular atrophy, Huntington's disease, and five different forms of dominantly inherited spinocerebellar ataxias (SCAs). A second group involves the 5′ CCG expansion that causes fragile X mental retardation and the intronic GAA expansion responsible for Friedreich's ataxia. Both of these result in decreased expression of their corresponding protein products. Finally, a third group involves the expanded CTG repeat in the 3′ untranslated region of the dystrophia myotonica-protein kinase coding sequence. This repeat has been shown to cause myotonic dystrophy, but it is not yet understood how this mutation causes an effect at the molecular level.
The ataxias can be dominantly or recessively inherited, or appear with no family history of disease. Among the adult-onset dominant spinocerebellar ataxias (SCAs), seven different loci have been mapped (S. Gispert et al.,
Nature Genet
., 4, 295-299 (1993); Y, Takiyama et al.,
Nature Genet
., 4, 300-304 (1993); K. Gardner et al.,
Neurology
, 44, A361 (1994); S. Nagafuchi et al.,
Nature Genet
., 6, 14-18 (1994); L. P. W. Ranum et al.,
Nature Genet
., 8, 280-284 (1994); A. Benomar et al.,
Nature Genet
., 10, 84-88 (1995); L. G. Gouw et al.,
Nature Genet
., 10, 89-93 (1995); O. Zhuchenko et al.,
Nature Genet
., 15, 62-69 (1997)). Approximately sixty percent of the dominant ataxias result from expansions in trinucleotide CAG repeats at the SCA1, 2, 3, 6 or 7 loci (S. Nagafuchi et al.,
Nature Genet
., 6, 14-18 (1994); O. Zhuchenko et al.,
Nature Genet
., 15, 62-69 (1997); H. T. Orr et al.,
Nature Genet
., 4, 211-226 (1993); Y. Kawaguchi et al.,
Nature Genet
., 8, 221-228 (1994); R. Koide et al.,
Nature Genet
., 6, 9-13 (1994); G. Imbert et al.,
Nature Genet
., 14, 285-291 (1996); S.-M. Pulst et al.,
Nature Genet
., 14, 269-276 (1996); K. Sanpei et al.,
Nature Genet
., 14, 277-284 (1996); G. David et al.,
Nature Genet
., 17, 65-70 (1997); M. D. Koob et al.,
Nature Genet
., 18, 72-75 (1998). The substantial clinical variability among the remaining 40% of the genetically undefined dominant families suggests that a number of additional ataxia coding sequences remain to be identified.
Identifying an ataxia coding sequence can provide an improved method for diagnosis of individuals with the disease and increases the possibility of prenatal/presymptomatic diagnosis or better classification of ataxias.
SUMMARY OF THE INVENTION
To determine whether an individual displaying symptoms of ataxia is suffering from spinocerebellar ataxia the number of CAG repeats in the SCA1, SCA2, SCA3, SCA6, or SCA7 coding sequences present in that individual can be determined. This same type of test can be used for the presymptomatic identification of whether a person may develop the symptoms of spinocerebellar ataxia in the future. In general, a generally high number of CAG repeats in a particular SCA coding sequence indicates that an individual is suffering from spinocerebellar ataxia, or may develop the symptoms of spinocerebellar ataxia in the future. The number of CAG repeats that is indicative of spinocerebellar ataxia typically varies with the type of SCA. Each of these coding sequences of the known types of SCA encodes a polypeptide containing a tract of uninterrupted glutamine amino acids (a polyglutamine tract). However, only approximately 60% of the dominant ataxias are accounted for by the SCA1, SCA2, SCA3, SCA6, and SCA7 coding sequences.
The coding sequence for an eighth spinocerebellar ataxia, spinocerebellar ataxia type 8, has been identified and isolated. The coding sequence is referred to as SCA8. Surprisingly, while the mRNA encoded by the SCA1, SCA2, SCA3, SCA6, and SCA7 coding sequences contains a repeat and is translated into a protein, the mRNA encoded by the SCA8 coding sequence contains repeats with stop codons in all reading frames. As a result, no translated protein has been identified. The isolation of the SCA8 coding sequence allows for the diagnosis of an additional type of spinocerebellar ataxia, spinocerebellar ataxia type 8.
The SCA8 coding sequence contains polymorphic CTA repeats and CTG repeats. The two repeats are located within an approximately 1.2 kb fragment, generally produced by digestion of the candidate region with the restriction enzyme, EcoRI. Generally, the CTA repeat is unstable and can vary between individuals in different families, but typically the number of CTA repeats in the repeat region does not vary between individuals within a family. The CTG repeat is unstable and is typically altered (i.e., expanded or contracted) in individuals with spinocerebellar ataxia type 8 or who are at risk for developing spinocerebellar ataxia type 8. This altered number of CTG repeats can occur both between individuals in different families and between individuals within a family (i.e., from one generation to the next and between siblings). PCR analysis of the region containing the repeats, for instance, demonstrates a correlation between the size of the altered repeat and the risk of displaying at least one symptom of spinocerebellar ataxia type 8. These results demonstrate that SCA8, like hereditary ataxia associated with, for example, SCA1, fragile X syndrome, myotonic dystrophy, X-linked spinobulbar muscular atrophy, and Huntington disease, displays a mutational mechanism involving expansion of at least one unstable trinucleotide repeat.
The present invention provides an isolated nucleic acid molecule containing a repeat region of an isolated spinocerebellar ataxia type 8 (SCA8) coding sequence, the coding sequence located within the long arm of chromosome 13, and a complement of the nucleic acid molecule. Preferably, the nucleic acid is DNA, and which can be genomic DNA or cDNA. In certain embodiments, the SCA8 coding sequence comprises nucleotides 1-448 of SEQ ID NO:1 followed by a repeat region. In other embodiments, the SCA8 coding sequence comprises nucleotides 726-1,159 of SEQ ID NO:1 preceded by a repeat region. Examples of such nucleic acid molecules are set forth in SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3.
In preferred embodiments, the present invention provides an isolated nucleic acid molecule wherein the nucleic acid comprises 1-448 of SEQ ID NO:1, and a complement thereto. Another preferred embodiment includes an isolated nucleic acid molecule comprising nucleotides 1-448 of SEQ ID NO:1 and further comprising a repeat region, and a complement thereto. Yet another preferred embodiment is an isolated nucleic acid molecule wherein the nucleic acid comprises 726-1,159 of SEQ ID NO:1, and a complement thereto. Such molecules can be incorporated into vectors if desired.
The present invention also provides isolated oligonucleotides that can be used as probes and/or primers. In one embodiment, the isolated oligonucleotide includes at least 15 nucleotides from nucleotides 1-448 of SEQ ID NO:1, and the complementary nucleotides thereto. In another embodiment, the isolated oligonucleotide comprising at least 15 nucleotides from nucleotides 726-1,159 of SEQ ID NO:1, and the complementary nucleotides thereto.
In another embodiment, the present invention provides an isolated oligonucleotide that hybridizes to a nucleic acid molecule containing a repeat region of an isolated SCA8 coding sequence; the oligonucleotide having at least about 11 nucleotides. In still another embodiment, the present invention provides an isolated r

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spinocerebellar ataxia type 8 and methods of detection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spinocerebellar ataxia type 8 and methods of detection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spinocerebellar ataxia type 8 and methods of detection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3144207

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.