Spinner with continuous 3-fold symmetry for multiple...

Fluid reaction surfaces (i.e. – impellers) – Specific blade structure – Radial flow devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C416S23100A

Reexamination Certificate

active

06524073

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the field of spatial, continuous surfaces having spinning and other dynamic properties which may be used in a multiplicity of educational, utilitarian and ornamental applications.
2. Description of the Prior Art
The use of a Mobius strip for multiple uses is well known. Lamlee, “Method of Making a Hexaflexagon,” U.S. Pat. No. 4,240,858 (1980) describes in FIG. 1 a sheet 10 of stock material which may be card stock, cardboard, plastic, PVC, PVA, acetate or any of thin, opaque or transparent material which is relatively rigid. FIG. 5 shows coated strips comprised of a sandwich 35 that has been cut into strips 42. These strips are comprised of triangular sections 44 of sheet stock covered on both sides by a transparent material. FIG. 7 illustrates a chain 55 comprised of 19 triangles. Beginning with hinge 56 and continuing along hinges 58, 60, 62, 64, 68, 70 and 72, the strip is twisted in one direction and folded onto itself to produce strip 73 shown in FIG. 8. Strip 73 is then folded along hinge 74 to produce the strip configuration 76 shown in FIG. 9. Triangle 84 is folded into position between triangle 83 and 81 and triangles 81 and 84 are glued together. The resulting structure is depicted in FIG. 10. Six of the triangular sections 86 comprising the strip of FIGS. 5 and 7 are then arranged in a side-by-side form of hexagon.
At column 3, beginning at line 50, Lamlee states that the strip portion comprising triangles 79, 80 and 81 are folded under triangle 82 along hinge 78. Triangle 84 is then folded to a position between triangles 83 and 81 and triangles 81 and 84 are adhered together. The resulting structure is shown in FIG. 10. The Lamlee device is actually nothing more than a flattened Mobius strip.
Lehr, “Therapeutic Elbow Support Method,” U.S. Pat. No. 5,624,388 (1997) shows in connection with FIG. 2, a device 1 comprised of a loop of elastic material. Loop has a 360° twist built into it in order to provide a distinct first surface 2 and a second surface 3. The device of FIG. 2 is similar to a Mobius strip, however, the strip is twisted 360° as opposed to 180° as in the Mobius strip. As shown on FIG. 2, device 1 will form a figure eight shape which divides the loop into an upper band 5 and lower band 6. The upper and lower band intersect at a cross over point 7.
Bailey, “Modified Helicoidal Wind Responsive Device” U.S. Pat. No. 4,850,798 (1989) describes the three dimensional surface formed like two line segments positioned at right angles with respect to another which rotate one about the other on an axis while simultaneously moving along the axis line. The generation of the conventional regular helicoid is shown in FIG. 5. FIG. 4 illustrates a wind-responsive device 10 having a modified helicoidal structure. The device, which is intended primarily to be used as a decoration, is suspended at its upper end from a swivel 20 connected to an eyelet 22 permitting free rotation structure. The embodiment shown in FIG. 1 comprises devices 10A and 10B arranged along a common axis and commonly connected at their upper end. FIG. 6 shows an attachment of sections 10A and 10B with their reinforced section oppositely extending. The greatest visual effect of the two sections are when they have different contrasting colors.
Rodriguez-Perazza “Link Chain for Power Drives,” U.S. Pat. No. 4,270,907 (1981) shows in FIG. 3 an endless an standard link chain 300 which includes 25 links 301-325 which are coupled together with a quarter turn twist given to the chain before forming it into a closed loop. The chain drive therefore is an endless chain with a quasi-Möbius twist. By doing so, each link 301-325 engages as an adjacent link with an average of 86.4° which turns out to have an advantage for gear engagement. If my visualization of the geometry is correct, this is a conventional Möbius twist or Möbius twist with two series twists.
Molenaar, “Pinwheel,” U.S. Pat. No. Des. 253,776 (1979) shows that FIGS. 1-7 a conventional pinwheel designed to be ornamental and rotated the wind.
Hornblad, et al. “Möbius Strip and Display Utilizing the Same,” U.S. Pat. No. 4,640,029 (1987) which shows in FIG. 1 a loop which in first appearance is in fact a conventional Möbius strip. Both clockwise and counter clockwise Möbius strips exist depending on whether the end of an ordinary loop is turned clockwise or counter clockwise in joining it together with opposing end to form the Möbius strip. The strip shown in FIG. 1 happens to be clockwise Möbius strip, which may give you some momentary confusion if you have to compare it against the model of a counter clockwise Möbius strip.
Greeson, “Möbius Strip Puzzle,” U.S. Pat. No. 5,324,037 (1994) is actually a counter clockwise Möbius strip.
What is needed is a symmetrical three-twist object, with a different geometry from the Mobius strip, which is dynamic in its function and is a spinner.
SUMMARY OF THE INVENTION
The invention, the Mamikon Spinner, is an object which is comprised of an elongated strip (whose proportions preferably exceed 6:1) of a thin, rigid or flexible material, whose one end is twisted three times and attached (e.g. sealed, glued, welded) to the other end, to form a symmetric “threefold”, three-dimensional shape. Mamikon's spinner is a unique, symmetric, triple twist strip, made by twisting a strip three times while simultaneously turning it in the same direction. The Mamikon spinner has threefold symmetry, a single surface and a single edge. It is three-dimensional and has a defined center axis about which the threefold symmetry is defined.
Geometrically, Mamikon's spinner is an “infinite” one-sided surface with an outside envelope or edge that is hexagonal in outline and triangular within an inside envelope or edge. It can be made in a left-sided or right-sided, mirror image.
The most important feature of this shape, for various applications, is its ability to spin under the slightest flow of fluid through it (e.g. air, water and other liquid or viscous media). The spinner, if left to fall, will spin in a certain direction keeping its plane of symmetry horizontal. The Mamikon spinner, moreover, has lifting or thrusting properties when rotated and, inversely works as a propeller.
To differentiate the Mamikon spinner from the traditional Mobius strip, notice that the Mobius strip is asymmetrical, cannot be made symmetrical, and thus can not spin. It will tumble or wobble when dropped from a height.
The manufacture of the Mamikon spinner does not follow from the Mobius strip. This is because one may twist a strip three times, then bring the ends together, and glue them; and this will result in an asymmetrical, curly object. While the curly object can be made symmetrical by turning it “inside out,” it is not readily apparent how this is to be done.
In other embodiments the Mamikon spinner is a two-twist, four-twist or more, symmetrical object. The spinner, when made with an odd number of twists, is a one-sided and one-edged surface, but the spinner with even number of twists is a two-sided and two-edged surface. This topologically confirms that the spinner cannot be considered topologically equivalent to a Mobius strip, which is one-sided only.
The spinner rotates easily around its axis of symmetry in response to the movement of slight air currents in the direction of its axis of symmetry when hung by its center, but is virtually unaffected by stronger airflows perpendicular to the axis of symmetry.
Its uses include educational activities, toys, garden hangers, ornamental mobiles, or attractive objects, lampshades, fans, pumps, propellers and windmills. It may also be used in artistic and design settings such as jewelry, art and architectural objects. Still further, it can be employed in tools such as grinders, drill heads, chain saws and the like.
Thus, in summary the features of the invention can be listed as including the following:
1. An object having an axis of symmetry for use in a fluid comprising a continuous strip loop having three twists in the sa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spinner with continuous 3-fold symmetry for multiple... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spinner with continuous 3-fold symmetry for multiple..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spinner with continuous 3-fold symmetry for multiple... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3179886

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.