Spindle motor and a hard disk drive apparatus including such...

Dynamic magnetic information storage or retrieval – Record transport with head stationary during transducing – Disk record

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06181513

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates in particular to a spindle motor to be used in the hard disk drive means, and a hard disk drive apparatus including such a motor.
2. Description of the Prior Art
The motor of the hard disk drive means employs grease or oil as a lubricant to be applied to the bearing.
In such kind of motors, splashing and dispersing of the lubricant from the bearing apparatus into the surrounding environment may be caused by the rotation of the motor. Further, fine dusts suspended in atmosphere is tend to get into the bearing assembly. In order to cope with such problems, some bearings has an annular sealing plate. The sealing structure of the prior art employing such annular sealing plate can be categorized into the contact type and the non-contact type.
In the case of the sealing structure of the non-contact type incorporated into the bearing apparatus, for example, the outer peripheral portion of the annular sealing plate is secured by means of adhesive to the end surface of the outer race with leaving a slight clearance between the inner peripheral portion thereof and the inner race to avoid the contact between them.
However, there is an problem of flowing the lubricant contained within the bearing out through the clearance while the motor is rotated in high speed. In the case of the motor for hard disk drive means, the lubricant flowing out through the clearance will be splashed through the clearance to make oil mist. Thus produced finely dispersed oil mist is apt to get into the disk enclosure of the hard disk drive means. These oil mist adhered on the magnetic disk or the magnetic head will cause the accidents such as the crushing of the magnetic disk and the magnetic head to reduce the reliability of the hard disk drive apparatus.
In order to prevent such accidents as mentioned above, a number of countermeasures have been taken by those skilled in the art. For example, in one of the countermeasures, the annular sealing plate is secured to the outer race around the outer peripheral portion thereof and making the inner peripheral edge thereof contact with the inner race. In such a countermeasure, not only the heat or the torque are produced by the friction between the sealing plate and the inner race, but also the wear due to friction will cause the leakage of the lubricant or produce frictional particles, so that this countermeasure can not be adopted.
Under the reason as mentioned above, the motor including the sealing structure of the non-contacting type as well as an additional labyrinth seal mechanism, or the motor having a magnetic fluid sealing mechanism within the bearing apparatus are available today. However, the additional labyrinth seal mechanism will increase the production cost for manufacturing the motor. When the magnetic fluid is employed to seal, the magnetic fluid is tend to shift radially outwardly under the effect of centrifugal force. Further, the magnetic fluid sometimes splashes under the effect of locally effected differential of air pressure. In conclusion neither of these structure is appropriate to the motor for hard disk drive apparatus. In particular, the additional labyrinth seal mechanism is to be employed, the manufacturer of the motor is required to incorporate such labyrinth seal mechanism into the motor, so that the production cost of the motor is increased.
Accordingly, the object of the present invention is to provide a motor suitable for the hard disk drive apparatus including a labyrinth seal mechanism incorporated into the bearing means to increase the sealing function of the sealing structure of non-contact type to provide a sufficient and reliable sealing function and a hard disk drive apparatus of increased reliability. It is only necessary for the manufacturer of the motor to assemble the motor with the bearing means into which a labyrinth seal mechanism had already been incorporated by the manufacturer of the bearing so that the production cost of the motor can be reduced.
SUMMARY OF THE INVENTION
Those and other objects are achieved by a motor including a double row bearing apparatus for supporting a rotor hub rotatably on a base characterized in that: the double row bearing apparatus includes; a two-stepped shaft having an enlarged diameter shaft portion and a reduced shaft portion, a sleeve outer race disposed around the shaft through a pair of first and second rows of rotating bodies interposed between the shaft and the sleeve, rotating bodies for the first row is adapted to be interposed between an outer peripheral rolling contact groove formed directly on the outer peripheral surface of the enlarged diameter shaft portion of the stopped shaft and a first inner peripheral rolling contact groove formed on the inner peripheral surface of the sleeve outer race, rotating bodies for the second row is adapted to be interposed between am outer peripheral rolling contact groove formed on an outer peripheral surface of an inner race fitted around the reduced diameter shaft portion of the stepped shaft and a second inner peripheral rolling contact groove formed on the inner peripheral surface of the sleeve outer race, at the side of the first row of the rotating bodies, a pair of inner and outer annular sealing plates are provided to leave a slight clearance between the inner or outer peripheral surface of each sealing plate and the outer peripheral surface of the enlarged diameter shaft portion or the end portion of the sleeve outer race to provide a labyrinth seal on one side of the sleeve outer race, and at the side of the second row of rotating bodies, a pair of inner and outer annular sealing plates are provided to leave a slight clearance between the inner or outer peripheral surface of each sealing plate and the inner race or the end portion of the sleeve outer race to provide a labyrinth seal on the other side of the sleeve outer race.
In the other embodiment of the present invention, at the side of said first row of the rotating bodies, inner and outer shoulders are formed on the end portion of the sleeve outer race in a two-stepped manner, and inner and outer shoulders are also provided on the outer peripheral surface of the enlarged diameter shaft portion of the stepped shaft in the same manner so as to opposite to the inner and outer shoulders of the sleeve outer race, said inner sealing plate is attached to either of said inner shoulder of the sleeve or the shaft with remaining a slight clearance between the plate and the shaft or the sleeve to provide the labyrinth seal function, and said outer sealing plate is attached to either of said outer shoulder of the sleeve or the shaft with remaining a slight clearance between the plate and the shaft or the sleeve to provide the labyrinth seal function.
In the other embodiment of the present invention, at the side of said second row of the rotating bodies, inner and outer shoulders may be provided on he end surface of the sleeve outer race in a two-stepped manner, and inner and outer shoulders may also be provided on the end portion of the inner race in the same manner so as to opposite to the inner and outer shoulders of the sleeve outer race, said inner sealing plate may be attached to said inner shoulder of either of the sleeve outer race or the inner race with remaining a slight clearance between the plate and the inner race or the sleeve outer race to provide the labyrinth seal function, and said outer sealing plate may be attached to said outer shoulder of either of the sleeve outer race or the inner race with remaining a slight clearance between the plate and the inner race of the sleeve outer race to provide a labyrinth seal.
In the further embodiment of the present invention, at the side of said first row of the rotating bodies, a one step shoulder is formed on the end surface of the sleeve outer race, and inner shoulder is provided on the outer peripheral surface of the enlarged diameter shaft portion of said stepped shaft to opposite to the shoulder of the sleeve outer race, an outer shoulder is also pro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spindle motor and a hard disk drive apparatus including such... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spindle motor and a hard disk drive apparatus including such..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spindle motor and a hard disk drive apparatus including such... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2467598

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.